i3D MFG Services Request a Quote
I3DMFG™I3DMFG™

Steel 3D Printing

By Stephanie Wehrhan

What can be 3D printed? Talking Materials

What can be 3D printed? Talking Materials

There are many options for metal materials in the world of 3D printing. The most common metals used to print parts are Aluminum, Titanium, Inconel, and Stainless Steel. Each of these metals hold unique properties that set them apart from one another. Depending on the desired use of the part, certain materials are more sought after for specific applications and performance vs others.

Aluminum is widely used in the Aerospace industry because of its lightweight material properties. Aluminum has a high strength-to-weight ratio, low density, and natural anti-corrosive properties meaning it doesn’t degrade due to oxidation. AlSi10 is i3D MFG’s most common aluminum powder and generates a high success rate in parts with thin walls and complicated geometries. Another option available is Al6061, which is a highly ductile and cost effective aluminum that prints more than 50% faster than AlSi10. For this reason, it’s becoming more popular in the AM industry for customers seeking faster build times.

Titanium is another popular choice for customers seeking high corrosion resistance with their parts. Similar to Aluminum, Titanium provides low weight and high strength making it an ideal material for Aerospace and Automotive applications. Titanium is commonly used as an alloying element with Aluminum or Steel to achieve specific properties in terms of ductility, strength, and hardness. Ti64 powder is well suited for projects requiring weight reduction and bio-compatibility. Ti64 typically hardens to 36-41 HRC after heat treatment.

Inconel comes from a family of high-performance alloys, known for its strength and resistance to thermal degradation. Because of this, Inconel alloys (such as IN625 and IN718) hold up when used in high temperature applications. Industries such as the Aerospace and Automotive industry use Inconels because they provide superior heat resistance with a typical heat treatment hardness of 40-47 HRC.

Similar to Inconel alloys, Haynes 282 is a super-alloy developed for high temperature structural applications and provides excellent resistance to strain-age cracking. Haynes 282 also has high ductility making it easy to fabricate and machine, because of this it is a popular material choice for the Aerospace and Automotive industry. Haynes 282 powder typically hardens to 20-32 HRC after heat treatment.

Stainless Steel is commonly sought out for projects that require high resistance to heat and corrosion. Our stainless steel powders are medical grade and typically harden to 40-45 HRC after heat treatment. Due to its characteristics, Stainless Steel is a particularly good choice for parts requiring high strength and hardness. Stainless steel parts can be machined, welded, polished, and coated making them ideal for corrosion resistant applications.

Whatever your desired application is, i3D can help assess your needs and provide suggestions for materials that will cause your project to excel. From prototypes to production ready parts, we’re happy to navigate customers through our selection of high-performance metals to help pick the right material for any given project.

By i3d

3D Metal Printing (Additive Manufacturing) Gives The Ability To Create The Nearly Impossible: With Limitations

Marc Saunders, Director – Global Solutions Centres at Renishaw, recently discussed how Additive Manufacturing (AM), a specifically 3D metal printing, can give us the ability to create components from designs that would be nearly impossible to produce conventionally.

As he points out, it’s not as simple though as having “unfettered freedom” to do whatever we want.  There are capabilities and limitations.

Mr. Saunders does a great job pointing out some key design considerations for laser melted metal parts. Here’s a few he points out:

  • Feature Size
  • Surface Finish
  • Overhangs
  • Lateral holes
  • Minimizing supports
  • Residual stress and distortion

Give the article a read in order to get the details on these key considerations.  As Marc point out,

“AM gives us huge freedom to design parts differently, but we do need to be aware of some of the characteristics and limitations of the process, so that we create parts that can be built successfully.

The DfAM rules described above are not too onerous in practice, and actually encourage us to consider ways to make parts that are lighter, faster to build, and more cost-effective.

Modern design and build preparation software helps enormously to find an optimum design, orientation and support strategy so that we can produce consistent parts economically. “

 

By Erin Stone

DMLS Stands Out as 2015 Focal 3D Printing Technology

DMLS Stands Out as 2015 Focal 3D Printing Technology

What makes Direct Metal Laser Sintering (DMLS) a leading 3D printing technology in 2015? It’s not new news that DMLS prints metal 3D parts. Here are some new exciting new trends  that Steve Heller, 3D specialist for the Motley Fool found “incredible”:

  Read more

By Erin Stone

3D Printing Takes the Cost of Complexity to Zero

3D Printing Takes the Cost of Complexity to Zero

Whats is the definition of “game changer” for metals manufacturing? Direct Metal Laser Sintering (DMLS), a 3D printing process that eliminates binding agents and uses 400-1000 W lasers to melt micro powders together, layer by layer until a 3D CAD model of a part is built, is one of the 3D manufacturing processes that are the the epitome of “game changer” according to Hod Lipson or Cornell University.   Read more

By Erin Stone

Just How Small Can DMLS Print?

Just How Small Can DMLS Print?

3D metal printing is in its element when it comes to production parts at micro scales. While machine development is focusing on creating DMLS paltforms that can print parts over 14″, Direct Metal Laser Sintering (DMLS), current DMLS capabilities are perfect for small, complex parts. 3D printing enables i3D MFG™ to deliver integral tiny, complex parts in Aluminum, Titanium, Maraging Steel, Stainless Steel and Inconel to Aerospace, Prosthetics, Medical Devise, UAV/UAS, Rocket/Spacecraft, Oil & Gas, Firearms, and Recreational Gear industries. For the part shown, a .015″ (15 thousandths of an inch) high latticed geometry was grown in Maraging (tool) steel. Machining the tiny part out of such a tough metal was expensive and problematic. Since DMLS build parts from mirco powder layers, laser melted together one micro layer at a time, 3D printing precise micro geometries is not much more difficult than printing large bulky parts – in fact, the larger the mass on a DMLS machine, the greater the risk of delamination and failed builds.

DMLS Micro Parts in Production Quantities

Currently, DMLS can accurately and repeatably manufacture parts as small as .030″ in Aluminum and Inconel and .015″ in Stainless Steel, Maraging Steel and Titanium. Additionally, complex assemblies of small to medium-sized  parts can be printed as a single part, eliminating weld lines, gaskets and fasteners. With micro parts, this can be a huge savings in precision assembly labor. Combine that  with a cost effective means of manufacturing small, complex parts in ferrous and non-ferrous metals ranging from Aluminum that does not register on the HRC scale to Maraging Steel that can be heat treated to 54 HRC, and the design innovations are astounding. Exotic metals also become affordable because DMLS does not produce the 30-70% scrap that traditional machining operations might. Contact i3D™ to learn more about our DMLS, Wire EDM, 3D Scanning and Design-for-3D serv

Material Process Applications

By Erin Stone

Is DMLS Metal Powder the Real Thing?

Is DMLS Metal Powder the Real Thing?

The short answer is YES. The longer version is, that DMLS powder performance is highly dependent on the expertise of the machine operator and 3D engineering design. i3D™ Manufacturing specializes in DMLS powder performance and applications. As the EOS Material Process Applications (MPA) partner, i3D™ is proactive in using open parameter sets on its machines to achieve varying densities, analyze layer performance, and optimize part quality. Densities can range to nearly 100% allowing for post process of DMLS metal parts in all of the same ways machined and cast parts are treated.

 

Not all DMLS Powders are Created Equal

Uniform particle size and shape is the ultimate goal.  Making sure that your DMLS provider knows the atomization process and resulting powder quality of their materials is a critical question. Read about AMA’s process. Ask the provider how they sieve their powders between builds. It makes a big difference in the quality of the part. Also ask about the material change-over procedures and powder storage conditions. Keep in mind, junk in, junk out. Below is a list of stock metal powders i3D™ uses. We also work with custom DMLS powder creation and applications such as Monel K 500 and Ti 6-2-4-2.

Aluminum (AlSi12) – better flow through the machine and very little residual Si. Great for thermal properties and weight considerations. Equivalent to 6061 billet. Fastest building and most cost effective material.

Titanium (Ti64) – i3D™ mastered DMLS titanium and recommends it for weight reduction and strength considerations. No waste 3D printing makes Titanium a highly cost effective DMLS material.

Inconel 718 – Widely used for aerospace applications. Highest reflectivity with excellent strength and corrosion resistance. Medium build speed with properties much like steel.

Stainless Steel (15-5, 17-4 & 304) – Strong and great corrosion resistance. The one draw back is that steel has a slow build time and is often a less cost effective option.

Maraging (tool) Steel – Hardens to 58 HRC after heat treat. Excellent choice for mold tool and production tool needs.

By i3d

DIRECT METAL LASER SINTERING (DMLS) FOR CAVITIES AND CORES

You needed your Injection Mold Tooling when? Yesterday??

The Direct Metal Laser Sintering (DMLS) process has been rapidly gaining recognition as perhaps one of the most powerful technologies available in the additive manufacturing world. The recent material parameter developments coupled with outstanding resolution and speed of fabrication are making DMLS cavity and core inserts a very successful tool that can be used to shorten lead times, reduce costs and push multiple projects through in the same amount of time that one project normally takes. i3D Manufacturing can print mold cavity and core inserts within days, giving end-use customers competitive advantages in real time-to-market, product development, and small batch production. Our Aluminum, Maraging Tool Steel and Stainless Steel mold tools can be post processed in all of the same ways as cast or machined parts, from polishing to welding to anodizing. 
 

Interchangeable Cavity and Core Insert Blocks

i3D™ owns North America’s first EOS M290 DMLS 3D Printing machine. As an official Material Process Applications (MPA) for EOS, i3D™ prides itself on its DMLS material and 3D print application innovations. Our interchangeable mold tool cavity and core universal base provides injection molders flexibility in switching out cavity and cores in small and medium batch runs at economical tooling and change-over costs.
 
With the latest, highest quality equipment i3D™  is able to achieve densities at nearly 100%, allowing for any finish requirements to the various 3D printed cavity and cores. Lattice and honeycomb designs specially tailored for optimal part cooling and heating add more value to the mold block design options. Injection molders can offer their clients tool design, manufacture, and part production in as little as 3 weeks. The process is all on-shore, protecting customer designs and avoiding costly tool change expense. Rapid Injection Tooling is often used as a bridge between prototyping and production but, not always. If you have low volume injection molding requirements, rapid tooling could be the answer for you. 
 
Aluminum (AlSi12)
AlSi12 is our most common DMLS Aluminum powder and is perfect for projects with good thermal and low weight considerations. It is an optimal metal for parts with thin walls and complex geometries
Maraging “Tool” Steel (MS1)
Our Maraging Steel powder has excellent strength and mechanical properties. MS1 is a pre-alloyed, ultra high strength powder most commonly used for tooling applications. Its chemical composition corresponds to U.S. 18% Ni, Maraging 300, European 1.2709 and German X3NiCoMoTi 18-9-5. After heat treatment, MS1 typically has a 50-53 HRC.
Stainless Steel (PH1)
PH1 is a medical grade, sterilisable, corrosion resistant steel. It is primarily used in Medical, Firearms, Energy and Automotive applications. After heat treatment, PH1 hardens to 40-45 HRC. Our Stainless steel equivalents include 15-5, 17-4 and 316. Parts made from EOS Stainless Steel PH1 can be machined, spark eroded, welded, micro shot peened, polished and coated if required.
 

      

By Erin Stone

DMLS Matures from Rapid Prototyping to Production Parts

DMLS Matures from Rapid Prototyping to Production Parts

Direct Metal Laser Sintering (DMLS) 3D printing was featured first as an excellent rapid prototyping tool and then as a new manufacturing advancement in two 3D Printing Industry News items over the past two days. So which is it, prototyping or production parts? The fantastic news for designers, engineers, and production managers is that DMLS has been a phenomenal rapid prototyping tool for functional metal parts for years and now it is also a proven metal manufacturing method for complex parts ranging from turbines to heat exchangers.

DMLS Rapid Prototyping Saves Valuable Weeks of Development Time

As Scott Grunewald points out in his article, “This (DMLS) rapid prototyping allows newly developed components to be test installed, articulated and checked for clearance and movement tolerances. The final models can then be used to create the drawings and manufacturing guides that define construction materials, inspection requirements and post processing features. This portion of the process is so fast that the final part is just being completed by the time the approved drawing is released.” Innovations can be tested in working models, using titanium, inconel, tool steel, stainless steel or aluminum and then tweaked and retested in a matter of days. DMLS parts near 100% density, making them comparable or denser than machined or cast parts. 3D metal printing, like other 3D printing methods allows multiple 3D models to be built at the same time without contending with expensive CNC programming time. Aerospace giants like GE and Lockheed Martin have invested in hundreds of DMLS machine to take advantage of this competitive advantage.

DMLS is Now a Proven Manufacturing Method for Production Parts

While GE and other aerospace players have used 3D prototyping for years, they have also increasingly starting using DMLS for production runs. Sigma Components’s news  about its funding and partnership with Rolls Royce to utilize DMLS to manufacture complex functional parts for use in end products highlights the untapped potential 3D manufacturing brings to production. DMLS has progressed in its speed and reliability to the point of becoming a viable process for Sigma to “…redesign and develop lightweight pipe end fittings that use 3D printing and additive manufacturing to reduce the weight of traditionally manufactured components and minimise part and manufacturing costs.” However, to achieve its full potential, designers and engineers must shift their perspective to Design-for-3D, eliminating traditional manufacturing design constraints.

i3D MFG™ is focused on helping its customers realize these manufacturing advantages. With a full team of 3D engineers, as well as its designation as the EOS Material Process Application partner, we not only offer 3D manufacturing, but new DMLS powder development, parameter development, and of course, rapid prototyping.

By Erin Stone

Direct Metal Laser Sintering offers Optimal Medical Implant Synergy

Direct Metal Laser Sintering offers Optimal Medical Implant Synergy

Spinal implants manufactured using 3D metal printing, or Direct Metal Laser Sintering (DMLS), have been the standard OEM sample to highlight complex latticed geometries. The question being, have any of those cool looking implants been used in the real world? Great new for all DMLS users and manufacturers – 4WEB Medical announced this week that 3,000 of their DMLS spinal implants have been successfully used by surgeons. Even better, the relatively rough surface finish associated with 3D printed metal parts creates an even better patient outcome. According to 4WEB, ” The truss implant designs have a distinctive open architecture, which allows for up to 75% of the implant to be filled with graft material to maximize bone incorporation.The 4WEB Medical ALIF device has a bi-convex surface that brings the implant and graft material closer to adjacent bone across the entire end plate rather than just around the outside edge. This in addition to a unique implant surface texture dramatically improves initial fixation and reduces the chance of migration.”

As a DMLS manufacturer, i3D MFG™ works closely with its clients on surface finish requirements, a commonly misunderstood piece of 3D metal printing. 3D metal parts are nearly 100% dense, allowing for any post process associated with machined or cast parts; however, clients often expect parts to come straight off the DMLS machine with near mirror polish. The reality is that the initial surface finish for a DMLS part before post process ranges form 125-300 Ra depending on the metal. 4WEB’s spinal implant leaves the rough surface which enhances the effectiveness of the implant. This is a huge shift in how we think about design, incorporating roughness as an innovative tool. Not all applications will achieve this type of synergy between the raw DMLS part and function, but as we shift towards design-for-3D, it’s worth taking note of the match between DMLS and medical implant advancements.

Image from: 4webmedical.com

1 2
DMLS Stands Out as 2015 Focal 3D Printing Technology
3D Printing Takes the Cost of Complexity to Zero
Just How Small Can DMLS Print?
Material Process Applications
Is DMLS Metal Powder the Real Thing?
DIRECT METAL LASER SINTERING (DMLS) FOR CAVITIES AND CORES
Direct Metal Laser Sintering offers Optimal Medical Implant Synergy