I3DMFGI3DMFG

3D Aerospace Printing

3D rocket engine preburn

By i3d

Significant 3D Printed Rocket Engine Milestone Reached

Aerojet Rocketdyne is pushing the 3D printing envelope once again with their latest tests. They recently reported two milestones that have been reached in the development of the 3D printed AR1 rocket engine.

Due to the outcomes of their testing, the AR1 rocket engine is now slated for certification by 2019 which will replace the Russian made RD-180 engine.

According to Aerojet, the “AR1 is the lowest-risk, lowest-cost-to-the-taxpayer and fastest path to eliminating U.S. dependence on foreign suppliers.”

So what part of the engine are 3D printed? The preburner, which drives the engine’s turbomachinery and features Aerojet’s “proprietary Mondaloy™ high-strength, burn resistant nickel-based super alloy.”

This milestone by Aerojet Rocketdyne also moves them a step closer to fulfilling a congressional mandate to end U.S. dependence on Russian engine technology for military launches. The company says that 3D printing is what has enabled them to get to this point.

Passing this milestone was also significant because they had to complete the Critical Design Review phase which has traditionally been harsh to do in regards to 3D printing.  They were able to successfully pass that so it was a huge milestone not only for Aerodyne but for 3D metal printing/additive manufacturing

Aerodyne CEO Eileen Drake explains that this milestone means the engine design is now finalized and confirmed before stating the company is “ready to build our first engine for qualification and certification.”

Aerojet-Rocketdyne-3-D-Printed-Copper-Thrust-Chamber-Assembly

By i3d

Aerojet Rocketdyne Tests 3D Printed Thrust Chamber With Success

Aerojet Rocketdyne Tests 3D Printed Thrust Chamber With Success

Aerojet Rocketdyne, a California based company, announced that they have successfully completed a hot-fire test of their 3D printed thrust chamber.

After the test, Aerojet Rocketdyne’s Manufacturing Program Manager, Jeff Hynes, said,

“truly transformative as it opens up new design possibilities and paves the way for a new generation of low-cost rocket engines.”

The hot-fire test was done on the RL-10 rocket engine and 475 RL-10 engines have flown to space since their introduction in 1963. There have been a lot of upgrades since then and 3D printing has now taken them into a new phase.

The test and the fact that the thruster was created using 3D metal printing, is truly transformative. The 3D printed copper thrust chamber replaces a series of complex stainless steel tubes which were formerly used. By using 3D printing the company managed to reduce the number of parts in the thrust chamber by 90% to just two components. The design also improves heat transfer within the part, and took only a month to 3D print, saving several months of lead time.

Christine Cooley, Director of the RL10 program, feels that the successful test of the thruster will move the company forward. She suggested that the addition of 3D printing and the need to be more efficient is a result of many factors including growing competition. Several other companies are exploring the use of 3D printed rocket parts and one such company, Rocket Lab, is looking to send a rocket with a 3D printed engine to the moon.

 

AFIT 3D Printing

By i3d

Air Force Institute Of Technology Unveils New 3D Printer

The Air Force Institute of Technology (AFIT) has been using additive manufacturing to build prototypes with polymers for quite a long time, so it seems fitting that they would unveil a new metal additive manufacturing system of their own.

The system that AFIT designed enables them to digitally fabricate aerospace metal parts and is called the Concept Laser M2 3D Metal Printer system.

The entire metal printing process that they have developed is fairly automated from start to finish, including the “sieving” at the end, where as other systems need a lot more manual user handling in order to complete the process.

AFTIT’s system will focus on advancing three primary aerospace metals: inconel, titanium, and aluminum. AFTIT is embarking on this endeavor so they can become experts in aerospace metal printing and inform the Air Force on the practical implementation of metal additive components for flight-critical air and space applications.

Maj. Ryan O’Hara, assistant professor, Gradual School of Engineering and Management at AFIT, says,

Ultimately, this is a capability that enhances the defense focused graduate research that we are already doing, whether that is to produce prototypes faster or get someone into the lab for practical experimentation – those are all things we’ve traditionally done in polymers to facilitate research and technology applications, and now we’re applying these techniques with metal

One of the main advantages of the metal additive manufacturing system is that it can produce internal structures to traditional metal parts that could not normally be machined.

There is so much that AFIT can do with additive manufacturing that the possibilities are endless, especially now that they can rapidly print parts they were never able to before at such low cost and speed.

Boeing 3D Printing

By i3d

The Use Of 3D Printing At Boeing

The Use Of 3D Printing At Boeing

The use of 3D printing at Boeing is alive and strong and here’s how they are using it. Leo Christodoulou is the Director of Structures and Materials, Enterprise Operations and Technology at Boeing  (NYSE:BA). During a presentation at the recent Additive Manufacturing for Aerospace, Defense and Space conference he gave insights into how 3D printing is increasingly used at the world’s largest aerospace company and the largest U.S. manufacturing exporter.

The Pentagon just recently awarded Boeing a $679 million deal for the Super Hornet spacecraft which features at least 150 parts made using Selective Laser Sintering (SLS) metal 3D printing. To date, there are more than 50,000 additive manufacturing parts being used successfully on Boeing aircraft.

Christodoulou, explaining the advantages to additive manufacturing, said:

AM holds at least three promising advantages. First, AM enables designs with novel geometries that would be difficult or impossible to achieve using CM processes, which can improve a component’s engineering performance. Second, AM can reduce the “cradle-to-gate” environmental footprints of component manufacturing through avoidance of the tools, dies, and materials scrap associated with CM processes. Third, novel geometries enabled by AM technologies can also lead to performance and environmental benefits in a component’s product application.

The general belief from Boeing’s perspective is that 3D printing will dominate tooling and it can cut costs by up to 70% which is extremely significant.  Additionally, Boeing sees ways that additive manufacturing can actually begin to create new design innovations and architectures.

future of additive manufacturing

By i3d

The Future Of Additive Manufacturing

The Future Of Additive Manufacturing

Last year, GE made headlines in the Additive Manufacturing world when they announced the purchase of Arcam AB and Concept Laser. This was the largest deal to date in the 3D printing industry. GE, somewhat of a newcomer to 3D metal printing, is now helping to push and define the future of additive manufacturing.

GE’s current Chief Productivity Officer and Senior Vice President, Philippe Cochet spoke many years ago about how, “the application of insights from digital connectivity with intelligent devices will elevate the skills of our workforce.”

As GE has ventured into the industry, they have defined three levels of thinking about additive manufacturing at an industrial level:

  • Component thinking
  • Systems thinking
  • DfAM (tearing down the product and designing for additive manufacturing)

The well known CFM LEAP-1A Fuel Nozzle is classed as level 1 additive thinking. In this case additive manufacturing was applied to an existing multi piece part, reducing the number of components from 20 to a single piece. One particularly costly process that was eliminated by the move to 3D printing was that a nickel alloy brazed together with  foils using gold, in traditional nozzle method is no longer required.

An example of level 2 thinking is the CT7 Combustor. This was an 18 month project on an engine that powers fixed wing craft. By using 3D printing, over 100 pieces were consolidated into one. (systems thinking)

Level 3, however, is where GE is today. An example is the Advanced Turboprop engine (ATP). 855 parts were reduced to 12 and the new process eliminated structural castings (though some casting is still required). The ATP has 20% lowered mission fuel burn, 5% weight reduction and the test schedule was reduced from 12 to 6 months.

Achieving these types of results is what will be driving additive manufacturing and the future of the industry. This gives freedom to enterprises seeking to push the boundaries of what is possible.

3D Printing Aerospace

By i3d

3D Printing Aerospace With Donald Godfrey

3D Printing Aerospace With Donald Godfrey

Donald Godfrey of Honeywell is a pioneer is the additive manufacturing segment, and more specifically the use of 3D metal printing (DMLS) for Aerospace parts at Honeywell. He recently sat down for an interview (podcast) and discussed 3D printing Aerospace in regards to how rapid prototyping is providing incredible time and cost savings as well as detailing what engineering students need to know and be doing in school right now if they want to pursue this field.

Don is the chair to the Honeywell Aerospace Intellectual Property Steering Committee for Additive Manufacturing Technology. He’s responsible for the integration of 3D printing into the business cultures, really trying to find ways to put that into different areas within the company.

During the interview, we learn that Honeywell has really been a huge champion for 3D printing and specifically in the aerospace segment.  Don gave a great example,

Let me give you an example. When we do turbine blades, we don’t do turbine blades and it’s not our intention to do turbine blades in production. But for prototype, we do. It may take three years to get your hands on a production blade. Typically, what happens is that after you get that cast blade and it’s machined perfectly to print, you’ll flow air through it or you’ll put it in an engine test. Some engineer will want to go and change it.

That is a real problem because the tooling, to get to that point, you’ve already spent $600,000, $700,000, you’ve waited three years and now somebody wants to go change it. That means that tool that you just spent three quarters of a million dollars on, somebody’s out there machining on it. With this technology, what I can do is print those blades in about two weeks.

I can print what we call a rainbow of blades. Meaning, I can make some just a little bit different than others. Maybe the openings are a couple of thousandths larger or maybe the shapes just a slight differentiation from the baseline. I can do all of that in less than a month. Then, I can, say, if I made five different shapes of blades, I can take the best blade and then take that CAD file, go back to the casting house and say, “Make this.”

That’s some really good insight into what the future of this industry is. Don had a lot more to say and some incredible examples of how DMLS is shaping an entirely new generation of engineers and manufacturing industries.  You can listen to the podcast here.

 

By i3d

Historic 3D Printed Rocket Engine Flight by Bagaveev Corporation

Historic 3D Printed Rocket Engine Flight by Bagaveev Corporation

I3D MFG 3D prints rocket thrusters in metal for Bagaveev Corporation. Bagaveev wanted to show how far the technology has moved and relevant Powder Laser Forging is by publishing a video on YouTube that shows their historic test of its 3D printed rocked engine flight.

  Read more

By i3d

U.S. Air Force General Proclaims Additive Manufacturing As A Massive Game Changer

Additive Manufacturing (DMLS) has been a rising trend that has the potential to revolutionize nearly everything we manufacture from human organs to mechanical components to firearm parts.

General Ellen Pawlikowski, Commander of the Air Force Material Command, compared the importance of additive manufacturing to other game-changing technologies like hypersonics, directed energy, and autonomy, stating,

“If you were to ask me what’s the fourth game changer, in my mind it’s additive manufacturing.”

I3D MFG agrees with these statements as they have been at the forefront of this  game-changing technology for nearly two years now, producing some of the most complex and revolutionary parts for their aerospace, firearms, heat exchanger and thruster clients

For the Air Force, these types of 3D metal parts, including flexible electronics, sensors, fuzes, energetics and warheads, help AFRL achieve the longer-term goal of using technologies like DMLS to rapidly prototype advanced capabilities for warfighters.

Dr. Amanda Schrand, principal investigator for FLEGOMAN at the AFRL/RW stated,

“We are maturing additive manufacturing to address technical challenges in fuze technology and ordnance sciences to increase the lethality of small weapons, and enable modular and flexible weapons. We also hope to decrease the time it takes to refresh critical components as well as decrease the cost to produce a weapon and its components. We are currently focusing on additively manufacturing survivable fuze electronics such as detonators, switches, capacitors and traces, leveraging the expertise of our colleagues at the AFRL Materials and Manufacturing Directorate, Sensors Directorate, Air Force Institute of Technology and Army Armament Research, Development and Engineering Center. Additionally, we are developing tailorable, lightweight, cellular warhead cases and structural reactive materials that offer strength and energy on demand. Finally, we are exploring ways to improve energetic materials by printing them rather than pouring them.”

I3D MFG, is able to use their experience and engineering to design, recommend,  and produce advanced metal components using additive manufacturing (DMLS) in order to fuel the next-generation of 3D metal printing techniques.

DMLS Warheads

By i3d

New Case Studies: Additive Manufacturing (DMLS) Optimization Warheads And Aircraft Wings

We have added two new case studies to our DMLS Resource Library.  Major David Liu and others at the Airforce Institute of Technology (AFIT) have published groundbreaking studies based on Additive Manufacturing (DMLS) optimization of aircraft wings and lattice-reinforced penetrative warheads.

Topology Optimization Of An Aircraft Wing

For the additive manufacturing industry and specifically DMLS aircraft printing, this is a very important study.  Here’s the summary from the white paper which can be found here in our library:

Topology optimization was conducted on a three-dimensional wing body in order to enhance structural performance and reduce overall weight of the wing. The optimization was conducted using commercial software on an aircraft wing with readily available schematics, allowing a stress and displacement analysis. Optimizations were accomplished with an objective of minimizing overall compliance while maintaining an overall design-space volume fraction of less than 30 percent. A complete wing segment was post processed and 3D printed. Future analysis involves the optimization of a complete wing body with comparison to the baseline structure. The resulting designs will be 3D printed and wind-tunnel tested for process verification. A design will also be manufactured using metallic additive manufacturing techniques as a proof of concept for future aircraft design. The final optimized solution is expected to provide a weight savings between 15 and 25 percent.

 

Topology Optimization of Additively-Manufactured, Lattice-Reinforced Penetrative Warheads

A second case study along with a great presentation by Captain Hayden K. Richards and Major David Liu discusses the groundbreaking effect of DMLS on lattice-reinforced warheads. Penetrative warheads, characterized by massive, strong, and tough solid cylindrical cases with ogive noses, are generally manufactured using traditional techniques such as subtractive fabrication processes. In these processes, material is removed from pre-formed solid masses to produce simple shapes.

Recently, the development of sophisticated additive manufacturing (AM) machines, known colloquially as 3D printers, has revolutionized the process of building metal parts.

Visit our library for access to these incredible studies which help to reinforce the growing use of DMLS in critical industries such as aerospace and firearms.

1 2
3D rocket engine preburn
Significant 3D Printed Rocket Engine Milestone Reached
Aerojet-Rocketdyne-3-D-Printed-Copper-Thrust-Chamber-Assembly
Aerojet Rocketdyne Tests 3D Printed Thrust Chamber With Success
AFIT 3D Printing
Air Force Institute Of Technology Unveils New 3D Printer
Boeing 3D Printing
The Use Of 3D Printing At Boeing
future of additive manufacturing
The Future Of Additive Manufacturing
3D Printing Aerospace
3D Printing Aerospace With Donald Godfrey
Hot-Fire Tests Show 3D Printed Rocket Parts Rival Traditionally Manufactured Parts
U.S. Air Force General Proclaims Additive Manufacturing As A Massive Game Changer
DMLS Warheads
New Case Studies: Additive Manufacturing (DMLS) Optimization Warheads And Aircraft Wings