i3D MFG Services Request a Quote
I3DMFG™I3DMFG™

3D Printed Spacecraft

By Stephanie Wehrhan

What can be 3D printed? Talking Materials

What can be 3D printed? Talking Materials

There are many options for metal materials in the world of 3D printing. The most common metals used to print parts are Aluminum, Titanium, Inconel, and Stainless Steel. Each of these metals hold unique properties that set them apart from one another. Depending on the desired use of the part, certain materials are more sought after for specific applications and performance vs others.

Aluminum is widely used in the Aerospace industry because of its lightweight material properties. Aluminum has a high strength-to-weight ratio, low density, and natural anti-corrosive properties meaning it doesn’t degrade due to oxidation. AlSi10 is i3D MFG’s most common aluminum powder and generates a high success rate in parts with thin walls and complicated geometries. Another option available is Al6061, which is a highly ductile and cost effective aluminum that prints more than 50% faster than AlSi10. For this reason, it’s becoming more popular in the AM industry for customers seeking faster build times.

Titanium is another popular choice for customers seeking high corrosion resistance with their parts. Similar to Aluminum, Titanium provides low weight and high strength making it an ideal material for Aerospace and Automotive applications. Titanium is commonly used as an alloying element with Aluminum or Steel to achieve specific properties in terms of ductility, strength, and hardness. Ti64 powder is well suited for projects requiring weight reduction and bio-compatibility. Ti64 typically hardens to 36-41 HRC after heat treatment.

Inconel comes from a family of high-performance alloys, known for its strength and resistance to thermal degradation. Because of this, Inconel alloys (such as IN625 and IN718) hold up when used in high temperature applications. Industries such as the Aerospace and Automotive industry use Inconels because they provide superior heat resistance with a typical heat treatment hardness of 40-47 HRC.

Similar to Inconel alloys, Haynes 282 is a super-alloy developed for high temperature structural applications and provides excellent resistance to strain-age cracking. Haynes 282 also has high ductility making it easy to fabricate and machine, because of this it is a popular material choice for the Aerospace and Automotive industry. Haynes 282 powder typically hardens to 20-32 HRC after heat treatment.

Stainless Steel is commonly sought out for projects that require high resistance to heat and corrosion. Our stainless steel powders are medical grade and typically harden to 40-45 HRC after heat treatment. Due to its characteristics, Stainless Steel is a particularly good choice for parts requiring high strength and hardness. Stainless steel parts can be machined, welded, polished, and coated making them ideal for corrosion resistant applications.

Whatever your desired application is, i3D can help assess your needs and provide suggestions for materials that will cause your project to excel. From prototypes to production ready parts, we’re happy to navigate customers through our selection of high-performance metals to help pick the right material for any given project.

I3DMFG Additive Manufacturing EOS

By i3d

How 3D Metal Printing Works (Video)

How 3D Metal Printing Works

So how does 3D metal printing work? Sometimes it’s good to get back to the basics and explore one of the questions many people have about 3D printing. We have all seen the press, the hype and some of the incredible things 3D printing can do, but 3D metal printing (Additive Manufacturing) stands on it’s own when it comes to quality and leadership in paving the way for the new era and generation of manufacturing.

With that, our friends over at Praxair, Inc. have produced this incredible video on how 3d metal printing actually works.

3D rocket engine preburn

By i3d

Significant 3D Printed Rocket Engine Milestone Reached

Aerojet Rocketdyne is pushing the 3D printing envelope once again with their latest tests. They recently reported two milestones that have been reached in the development of the 3D printed AR1 rocket engine.

Due to the outcomes of their testing, the AR1 rocket engine is now slated for certification by 2019 which will replace the Russian made RD-180 engine.

According to Aerojet, the “AR1 is the lowest-risk, lowest-cost-to-the-taxpayer and fastest path to eliminating U.S. dependence on foreign suppliers.”

So what part of the engine are 3D printed? The preburner, which drives the engine’s turbomachinery and features Aerojet’s “proprietary Mondaloy™ high-strength, burn resistant nickel-based super alloy.”

This milestone by Aerojet Rocketdyne also moves them a step closer to fulfilling a congressional mandate to end U.S. dependence on Russian engine technology for military launches. The company says that 3D printing is what has enabled them to get to this point.

Passing this milestone was also significant because they had to complete the Critical Design Review phase which has traditionally been harsh to do in regards to 3D printing.  They were able to successfully pass that so it was a huge milestone not only for Aerodyne but for 3D metal printing/additive manufacturing

Aerodyne CEO Eileen Drake explains that this milestone means the engine design is now finalized and confirmed before stating the company is “ready to build our first engine for qualification and certification.”

By Erin Stone

Can 3D Metal Printed Rocket Parts Hold Up To Stress Tests?

As part of it’s AR1 booster engine project, Aeroject Rocketdyne put some 3D printed rocket parts under fire. The parts were subjected to a round of hot-fire tests in preparation for an AR1 engine production by 2019.  Can 3D Printed parts hold up to such strenuous and exhaustive testing?

A little background.  Aerojet Rocketdyne is currently developing the AR1 for full production.  The AR1 is a 500,000 lb thrust-class liquid oxygen/kerosene booster engine which is an American-made alternative to the likes of the Russian built RD-180.   Aerojet is preparing for the replacement of the RD-180 due to a new rule from the National Defense Authorization Act which was enacted in 2015 that calls for the replacement of the RD-180 for “national security space launches by 2019.”

Due to the function of a booster engine, these types of tests come at an important time for 3D metal printed parts.  The industry is experiencing significant growth in the use of Inconel and Titanium metal powder printing which has yielded incredible results in not only the aerospace industry but in the firearms and medical industries as well.

In order to bring the AR1 to market by 2019, testing has to begin now and it’s an incredible amount of heat and stress they are placing these 3D metal printed parts under. The motivation for these hot-fire tests was an evaluation of various main injector element designs and fabrication methods.

A few of the injectors were fabricated using Selective Laster Melting (SLM) and Aerojet has invested heavily into the use of SLM capabilities for rocket engine applications.

Aerojet Rocketdyne fully believes that the AR1 single-element hot-fire tests are the highest pressure hot-fire tests (over 2,000 psi) of a 3D metal printed part in rocket engine application.  Because of the success of these tests, Aerojet Rocketdyne says that 3D metal printing will account for a potential 70% reduction in cost for production of the main injector, and a possible nine-month reduction in part lead times.

So. Can 3D metal printed rocket parts hold up to extreme stress testing? Yes!  And this is just the beginning of an upward trend as 3D metal printing using Inconel, Titanium, and Maraging Steel see massive success in other large industries such as firearms and medical.  Stay tuned for your next 3D printed car….

By Erin Stone

DMLS Stands Out as 2015 Focal 3D Printing Technology

DMLS Stands Out as 2015 Focal 3D Printing Technology

What makes Direct Metal Laser Sintering (DMLS) a leading 3D printing technology in 2015? It’s not new news that DMLS prints metal 3D parts. Here are some new exciting new trends  that Steve Heller, 3D specialist for the Motley Fool found “incredible”:

  Read more

By Erin Stone

3D Printing Takes the Cost of Complexity to Zero

3D Printing Takes the Cost of Complexity to Zero

Whats is the definition of “game changer” for metals manufacturing? Direct Metal Laser Sintering (DMLS), a 3D printing process that eliminates binding agents and uses 400-1000 W lasers to melt micro powders together, layer by layer until a 3D CAD model of a part is built, is one of the 3D manufacturing processes that are the the epitome of “game changer” according to Hod Lipson or Cornell University.   Read more

By Erin Stone

Just How Small Can DMLS Print?

Just How Small Can DMLS Print?

3D metal printing is in its element when it comes to production parts at micro scales. While machine development is focusing on creating DMLS paltforms that can print parts over 14″, Direct Metal Laser Sintering (DMLS), current DMLS capabilities are perfect for small, complex parts. 3D printing enables i3D MFG™ to deliver integral tiny, complex parts in Aluminum, Titanium, Maraging Steel, Stainless Steel and Inconel to Aerospace, Prosthetics, Medical Devise, UAV/UAS, Rocket/Spacecraft, Oil & Gas, Firearms, and Recreational Gear industries. For the part shown, a .015″ (15 thousandths of an inch) high latticed geometry was grown in Maraging (tool) steel. Machining the tiny part out of such a tough metal was expensive and problematic. Since DMLS build parts from mirco powder layers, laser melted together one micro layer at a time, 3D printing precise micro geometries is not much more difficult than printing large bulky parts – in fact, the larger the mass on a DMLS machine, the greater the risk of delamination and failed builds.

DMLS Micro Parts in Production Quantities

Currently, DMLS can accurately and repeatably manufacture parts as small as .030″ in Aluminum and Inconel and .015″ in Stainless Steel, Maraging Steel and Titanium. Additionally, complex assemblies of small to medium-sized  parts can be printed as a single part, eliminating weld lines, gaskets and fasteners. With micro parts, this can be a huge savings in precision assembly labor. Combine that  with a cost effective means of manufacturing small, complex parts in ferrous and non-ferrous metals ranging from Aluminum that does not register on the HRC scale to Maraging Steel that can be heat treated to 54 HRC, and the design innovations are astounding. Exotic metals also become affordable because DMLS does not produce the 30-70% scrap that traditional machining operations might. Contact i3D™ to learn more about our DMLS, Wire EDM, 3D Scanning and Design-for-3D serv

By Erin Stone

Heat Sinks are an Ideal DMLS Application

Heat Sinks are an Ideal DMLS Application

Conformal cooling channels manufactured out of 6061 Aluminum open up amazing possibilities for heat sink applications. Direct Metal Laser Sintering (DMLS) metal 3D printing cost effectively allows aerospace, oil & gas, and automotive engineers not only to easily manufacture cooling channels, but to produce conformal micro channels that traditional manufacturing cannot achieve. Since DMLS powder is a 6061 Aluminum equivalent, the thermal conductive properties are also well matched. With held tolerance’s off the machine of +/- .004 and a process that builds parts with highly complex internal geometries, compact heat sinks that maximize surface area and air flow are possible. DMLS melts metal powder layers together to nearly 100% density, also making these innovative heat sinks manufacturable using 3D metal printing.

Study Shows DMLS Most Effective Way to Produce Heat Sinks

A recent Plunkett Associates study looked at a variety of methods to build more efficient heat sinks and it concluded that, “The five best performing heat sinks were built using DMLS.”  They further concluded that all five cases showed a consistent heat source temperature when compared to traditional extruded and stamped 2D processes. A different IOP Science study examined the impact of DMLS surface roughness on heat sink performance and concluded, ” Our results offer an evidence of the possible impact of DMLS on electronic cooling since a 50% and 20% enhancement (compared to milled samples) is observed for flat and finned heat sinks, respectively… These results open the way for a huge boost in the technology of electronic cooling by DMLS.”

i3D MFG™ has produced several successful heat sink projects for a variety of aerospace and UAV companies using our DMLS Aluminum. In addition to the conformal cooling channels and the surface roughness advantages, client can also produce multiple designs on one build for testing and then come back and do production runs on the bets performing design. i3D™ also 3D prints in Titanium, Stainless Steel, Maraging Steel, and Inconel.

i3DMFG Metals For Additive Manufacturing

By i3d

Oregon Welcomes i3D MFG™ 3D Metal Printing

Oregon Welcomes i3D MFG™ 3D Metal Printing

Why would a new small business opening in The Dalles, Oregon be newsworthy to Aerospace Manufacturing and Design Magazine? Aerospace is big in the Pacific Northwest and the UAV/UAS giant Insitu is located 20 minutes from i3D™ Manufacturing’s Direct Metal Laser Sintering (DMLS) factory. 3D metal printing has emerged as a critical component in aerospace, rocket, and UAV design and manufacturing, but until 2014, there were no Northwest DMLS service providers. Insitu, Boeing, and the like were forced to use services thousands of miles  away, reducing some of the lead time and cost advantages 3D printing is known for. Oregon is defined by innovation and i3D™’s 3D printing technology is at the forefront of advanced and additive manufacturing. DMLS moves 3D printing from the prototyping realm into true production parts manufacturing. DMLS parts are used in final assemblies by Boeing, Lockheed Martin, GE, etc. In addition to aerospace, i3D™ also provides parts for medical and dental device applications, firearms accessory manufacturers, the energy and recreational gear industries, and automotive parts users.

The Future of Manufacturing

In 2013, manufacturing accounted for 28% of Oregon’s economy, over $65 billion in output. So, its not surprising that the Portland Tribune and Portland Business Journal also featured i3D™ in their Summer 2014 publications. As opposed to traditional, or subtractive manufacturing where parts are carved out of billet, the additive manufacturing process starts with 20-40 micron layers of powdered metal and uses a laser to melt thousands of micro layers together, one layer at a time based on a 3D CAD model – adding material only where the model dictates.  The no-waste process enables parts to be built that cannot be traditionally manufactured, including complex geometries, lattice and honeycomb structures, conformal channels, and single part builds of multi-part assemblies. i3D™ prints stock metals including Titanium, Aluminum, Inconel, 15-5 and 17-4 Stainless Steel, and Maraging Tool Steel as well as custom powders created for specific customer applications. The Dalles has a long history of metal manufacturing and gave i3D™ a warm welcome to its community and the Columbia River Gorge region. Both The Dalles Chronicle and Gorge Technology Alliance celebrated i3D™’s headquarters locating in Oregon. 

i3DMFG 3D Metal Printing Technologies Services

By i3d

Additive Manufacturing for Aerospace

The Critical Role of Additive Manufacturing for Aerospace Applications:

The Aerospace industry has been integrating DMLS (Direct Metal Laser Sintering) in its structural applications for years. Other industries are now jumping on board with this cutting edge technology  (oil and gas, medical, military, auto…). While typical applications revolved around standard objects such as brackets and ducts using investment casting- the future lies with 3D Design-for-Manufacturing. Nozzles, Injectors, Turbine Blades, Wing Spans, Spars, Struts, Entire Jet and Rocket engines all contain 3D production parts. Check out GE’s latest DMLS advancement.

Exciting New Metals for Aerospace: Titanium Ti-6Al-2Sn-4Zr-2Mo (Ti-6-2-4-2)

Chemistry Data :

Aluminum 5.5 – 6.5
Carbon 0.08 max
Hydrogen 0.0125 max
Iron 0.25 max
Molybdenum 1.75 – 2.25
Nitrogen 0.05 max
Oxygen 0.12 max
Silicon 0.1 max
Tin 1.75 – 2.25
Titanium Balance
Zirconium 3.5 – 4.5

 

Titanium (Ti-6Al-2Sn-4Zr-2Mo) has generally been intended for high temperature use in environments up to 538°C (1000°F). Common applications consist of “hot section” gas turbine components such as discs, impellers, turbines, etc. With excellent tensile creep and fatigue properties, Ti 6-2-4-2 is also used for afterburner structures and hit airframe “skin” applications. Not readily available, Ti-6-2-4-2 is possible to convert and print using DMLS. i3D™ specializes in custom DMLS powder development and production.

Titanium is considered difficult to machine or cast. While Titanium for DMLS requires experienced operators, once its risk factors are mastered, it is forgiving and relatively affordable using DMLS. Its characteristics have been compared to those found in 316 Stainless Steel 3D printed parts. Recommended practice includes high coolant flow which aids the offset of the materials for minimal thermal conductivity establishing gradual speeds and relatively high feed rates.


i3D™ works relentlessly to make sure customer requirements are always met and understood. We actively use our manufacturing knowledge for customers’ benefits. Whether it is one part or production volume parts, i3D™’s experienced team is determined to deliver the highest quality part, quickly and accurately.

 

I3DMFG Additive Manufacturing EOS
How 3D Metal Printing Works (Video)
3D rocket engine preburn
Significant 3D Printed Rocket Engine Milestone Reached
DMLS Stands Out as 2015 Focal 3D Printing Technology
3D Printing Takes the Cost of Complexity to Zero
Just How Small Can DMLS Print?
Heat Sinks are an Ideal DMLS Application
i3DMFG Metals For Additive Manufacturing
Oregon Welcomes i3D MFG™ 3D Metal Printing
i3DMFG 3D Metal Printing Technologies Services
Additive Manufacturing for Aerospace