i3D MFG Services Request a Quote
I3DMFG™I3DMFG™

Titanium 3D Printing

By Stephanie Wehrhan

What can be 3D printed? Talking Materials

What can be 3D printed? Talking Materials

There are many options for metal materials in the world of 3D printing. The most common metals used to print parts are Aluminum, Titanium, Inconel, and Stainless Steel. Each of these metals hold unique properties that set them apart from one another. Depending on the desired use of the part, certain materials are more sought after for specific applications and performance vs others.

Aluminum is widely used in the Aerospace industry because of its lightweight material properties. Aluminum has a high strength-to-weight ratio, low density, and natural anti-corrosive properties meaning it doesn’t degrade due to oxidation. AlSi10 is i3D MFG’s most common aluminum powder and generates a high success rate in parts with thin walls and complicated geometries. Another option available is Al6061, which is a highly ductile and cost effective aluminum that prints more than 50% faster than AlSi10. For this reason, it’s becoming more popular in the AM industry for customers seeking faster build times.

Titanium is another popular choice for customers seeking high corrosion resistance with their parts. Similar to Aluminum, Titanium provides low weight and high strength making it an ideal material for Aerospace and Automotive applications. Titanium is commonly used as an alloying element with Aluminum or Steel to achieve specific properties in terms of ductility, strength, and hardness. Ti64 powder is well suited for projects requiring weight reduction and bio-compatibility. Ti64 typically hardens to 36-41 HRC after heat treatment.

Inconel comes from a family of high-performance alloys, known for its strength and resistance to thermal degradation. Because of this, Inconel alloys (such as IN625 and IN718) hold up when used in high temperature applications. Industries such as the Aerospace and Automotive industry use Inconels because they provide superior heat resistance with a typical heat treatment hardness of 40-47 HRC.

Similar to Inconel alloys, Haynes 282 is a super-alloy developed for high temperature structural applications and provides excellent resistance to strain-age cracking. Haynes 282 also has high ductility making it easy to fabricate and machine, because of this it is a popular material choice for the Aerospace and Automotive industry. Haynes 282 powder typically hardens to 20-32 HRC after heat treatment.

Stainless Steel is commonly sought out for projects that require high resistance to heat and corrosion. Our stainless steel powders are medical grade and typically harden to 40-45 HRC after heat treatment. Due to its characteristics, Stainless Steel is a particularly good choice for parts requiring high strength and hardness. Stainless steel parts can be machined, welded, polished, and coated making them ideal for corrosion resistant applications.

Whatever your desired application is, i3D can help assess your needs and provide suggestions for materials that will cause your project to excel. From prototypes to production ready parts, we’re happy to navigate customers through our selection of high-performance metals to help pick the right material for any given project.

By Stephanie Wehrhan

Additive Manufacturing and Post Processing – A synergetic relationship

In the world of Additive Manufacturing, 3D printing is usually the first thing that comes to mind. However there is something equally as important in AM, and that’s strong relationships with post processing vendors. Once a part has been 3D printed, they are often not complete for a customers proposed application. This is why we rely on a synergetic relationship with post processing services to help us provide a complete and finished product that meets the customers criteria. The most common post processing services utilized in the AM industry today are Post-Machining, HIP treatment, and Anodizing.

Our friends at Cascade Precision Inc, an Oregon based AS9100 and ISO9001 certified Post-Machining company help to post process parts that require further assistance before they are considered complete. Post-Machine shops utilize high precision CNC machines to either lath or mill a part to meet given parameters or tolerances.

When parts need their density increased, heat combined with pressure is applied to the material from all directions in a manufacturing process called HIP (Hot Isostatic Pressing). Argon is the most commonly used pressure medium. After optimal HIP treatment is applied to parts tensile strength can increase significantly based on the ductility desired by the customer.

When aiming to give a part a certain cosmetic look, customers rely on anodizing services. Anodizing hardens and coats parts to make them tougher and give them a specific color chosen by the customer. Anodizing can differ between soft and hard coating, soft coating provides a thin coating while hard coating provides a thicker coating to help prevent corrosion.

Looking to the future, the importance of maintaining a synergetic relationship with post processing services cannot be overlooked. This relationship is crucial to meet the dynamic demands of the AM industry. i3D is committed to establishing strong working relationships with post processing services in order to provide the best product possible to suite our customers needs.

AFIT 3D Printing

By i3d

Air Force Institute Of Technology Unveils New 3D Printer

The Air Force Institute of Technology (AFIT) has been using additive manufacturing to build prototypes with polymers for quite a long time, so it seems fitting that they would unveil a new metal additive manufacturing system of their own.

The system that AFIT designed enables them to digitally fabricate aerospace metal parts and is called the Concept Laser M2 3D Metal Printer system.

The entire metal printing process that they have developed is fairly automated from start to finish, including the “sieving” at the end, where as other systems need a lot more manual user handling in order to complete the process.

AFTIT’s system will focus on advancing three primary aerospace metals: inconel, titanium, and aluminum. AFTIT is embarking on this endeavor so they can become experts in aerospace metal printing and inform the Air Force on the practical implementation of metal additive components for flight-critical air and space applications.

Maj. Ryan O’Hara, assistant professor, Gradual School of Engineering and Management at AFIT, says,

Ultimately, this is a capability that enhances the defense focused graduate research that we are already doing, whether that is to produce prototypes faster or get someone into the lab for practical experimentation – those are all things we’ve traditionally done in polymers to facilitate research and technology applications, and now we’re applying these techniques with metal

One of the main advantages of the metal additive manufacturing system is that it can produce internal structures to traditional metal parts that could not normally be machined.

There is so much that AFIT can do with additive manufacturing that the possibilities are endless, especially now that they can rapidly print parts they were never able to before at such low cost and speed.

By i3d

3D Metal Printing (Additive Manufacturing) Gives The Ability To Create The Nearly Impossible: With Limitations

Marc Saunders, Director – Global Solutions Centres at Renishaw, recently discussed how Additive Manufacturing (AM), a specifically 3D metal printing, can give us the ability to create components from designs that would be nearly impossible to produce conventionally.

As he points out, it’s not as simple though as having “unfettered freedom” to do whatever we want.  There are capabilities and limitations.

Mr. Saunders does a great job pointing out some key design considerations for laser melted metal parts. Here’s a few he points out:

  • Feature Size
  • Surface Finish
  • Overhangs
  • Lateral holes
  • Minimizing supports
  • Residual stress and distortion

Give the article a read in order to get the details on these key considerations.  As Marc point out,

“AM gives us huge freedom to design parts differently, but we do need to be aware of some of the characteristics and limitations of the process, so that we create parts that can be built successfully.

The DfAM rules described above are not too onerous in practice, and actually encourage us to consider ways to make parts that are lighter, faster to build, and more cost-effective.

Modern design and build preparation software helps enormously to find an optimum design, orientation and support strategy so that we can produce consistent parts economically. “

 

i3DMFG-3D-Printing-Services-Aerospace

By i3d

3D Printed Rocket Parts? Yes!

Are companies successfully making 3D printed rocket parts?  As the 3D metal printing industry continues to mature using technologies like Direct Metal Laser Sintering (DMLS) for bridge manufacturing using metals such as Inconel and Titanium, there has been an uptick in the number of successful 3D printed rocket parts.

  Read more

By Erin Stone

Can 3D Metal Printed Rocket Parts Hold Up To Stress Tests?

As part of it’s AR1 booster engine project, Aeroject Rocketdyne put some 3D printed rocket parts under fire. The parts were subjected to a round of hot-fire tests in preparation for an AR1 engine production by 2019.  Can 3D Printed parts hold up to such strenuous and exhaustive testing?

A little background.  Aerojet Rocketdyne is currently developing the AR1 for full production.  The AR1 is a 500,000 lb thrust-class liquid oxygen/kerosene booster engine which is an American-made alternative to the likes of the Russian built RD-180.   Aerojet is preparing for the replacement of the RD-180 due to a new rule from the National Defense Authorization Act which was enacted in 2015 that calls for the replacement of the RD-180 for “national security space launches by 2019.”

Due to the function of a booster engine, these types of tests come at an important time for 3D metal printed parts.  The industry is experiencing significant growth in the use of Inconel and Titanium metal powder printing which has yielded incredible results in not only the aerospace industry but in the firearms and medical industries as well.

In order to bring the AR1 to market by 2019, testing has to begin now and it’s an incredible amount of heat and stress they are placing these 3D metal printed parts under. The motivation for these hot-fire tests was an evaluation of various main injector element designs and fabrication methods.

A few of the injectors were fabricated using Selective Laster Melting (SLM) and Aerojet has invested heavily into the use of SLM capabilities for rocket engine applications.

Aerojet Rocketdyne fully believes that the AR1 single-element hot-fire tests are the highest pressure hot-fire tests (over 2,000 psi) of a 3D metal printed part in rocket engine application.  Because of the success of these tests, Aerojet Rocketdyne says that 3D metal printing will account for a potential 70% reduction in cost for production of the main injector, and a possible nine-month reduction in part lead times.

So. Can 3D metal printed rocket parts hold up to extreme stress testing? Yes!  And this is just the beginning of an upward trend as 3D metal printing using Inconel, Titanium, and Maraging Steel see massive success in other large industries such as firearms and medical.  Stay tuned for your next 3D printed car….

By Erin Stone

DMLS Stands Out as 2015 Focal 3D Printing Technology

DMLS Stands Out as 2015 Focal 3D Printing Technology

What makes Direct Metal Laser Sintering (DMLS) a leading 3D printing technology in 2015? It’s not new news that DMLS prints metal 3D parts. Here are some new exciting new trends  that Steve Heller, 3D specialist for the Motley Fool found “incredible”:

  Read more

By Erin Stone

3D Printing Takes the Cost of Complexity to Zero

3D Printing Takes the Cost of Complexity to Zero

Whats is the definition of “game changer” for metals manufacturing? Direct Metal Laser Sintering (DMLS), a 3D printing process that eliminates binding agents and uses 400-1000 W lasers to melt micro powders together, layer by layer until a 3D CAD model of a part is built, is one of the 3D manufacturing processes that are the the epitome of “game changer” according to Hod Lipson or Cornell University.   Read more

By Erin Stone

Just How Small Can DMLS Print?

Just How Small Can DMLS Print?

3D metal printing is in its element when it comes to production parts at micro scales. While machine development is focusing on creating DMLS paltforms that can print parts over 14″, Direct Metal Laser Sintering (DMLS), current DMLS capabilities are perfect for small, complex parts. 3D printing enables i3D MFG™ to deliver integral tiny, complex parts in Aluminum, Titanium, Maraging Steel, Stainless Steel and Inconel to Aerospace, Prosthetics, Medical Devise, UAV/UAS, Rocket/Spacecraft, Oil & Gas, Firearms, and Recreational Gear industries. For the part shown, a .015″ (15 thousandths of an inch) high latticed geometry was grown in Maraging (tool) steel. Machining the tiny part out of such a tough metal was expensive and problematic. Since DMLS build parts from mirco powder layers, laser melted together one micro layer at a time, 3D printing precise micro geometries is not much more difficult than printing large bulky parts – in fact, the larger the mass on a DMLS machine, the greater the risk of delamination and failed builds.

DMLS Micro Parts in Production Quantities

Currently, DMLS can accurately and repeatably manufacture parts as small as .030″ in Aluminum and Inconel and .015″ in Stainless Steel, Maraging Steel and Titanium. Additionally, complex assemblies of small to medium-sized  parts can be printed as a single part, eliminating weld lines, gaskets and fasteners. With micro parts, this can be a huge savings in precision assembly labor. Combine that  with a cost effective means of manufacturing small, complex parts in ferrous and non-ferrous metals ranging from Aluminum that does not register on the HRC scale to Maraging Steel that can be heat treated to 54 HRC, and the design innovations are astounding. Exotic metals also become affordable because DMLS does not produce the 30-70% scrap that traditional machining operations might. Contact i3D™ to learn more about our DMLS, Wire EDM, 3D Scanning and Design-for-3D serv

1 2
AFIT 3D Printing
Air Force Institute Of Technology Unveils New 3D Printer
i3DMFG-3D-Printing-Services-Aerospace
3D Printed Rocket Parts? Yes!
DMLS Stands Out as 2015 Focal 3D Printing Technology
3D Printing Takes the Cost of Complexity to Zero
Just How Small Can DMLS Print?