i3D MFG Services Request a Quote
I3DMFG™I3DMFG™

Titanium 3D Printing

Material Process Applications

By Erin Stone

Is DMLS Metal Powder the Real Thing?

Is DMLS Metal Powder the Real Thing?

The short answer is YES. The longer version is, that DMLS powder performance is highly dependent on the expertise of the machine operator and 3D engineering design. i3D™ Manufacturing specializes in DMLS powder performance and applications. As the EOS Material Process Applications (MPA) partner, i3D™ is proactive in using open parameter sets on its machines to achieve varying densities, analyze layer performance, and optimize part quality. Densities can range to nearly 100% allowing for post process of DMLS metal parts in all of the same ways machined and cast parts are treated.

 

Not all DMLS Powders are Created Equal

Uniform particle size and shape is the ultimate goal.  Making sure that your DMLS provider knows the atomization process and resulting powder quality of their materials is a critical question. Read about AMA’s process. Ask the provider how they sieve their powders between builds. It makes a big difference in the quality of the part. Also ask about the material change-over procedures and powder storage conditions. Keep in mind, junk in, junk out. Below is a list of stock metal powders i3D™ uses. We also work with custom DMLS powder creation and applications such as Monel K 500 and Ti 6-2-4-2.

Aluminum (AlSi12) – better flow through the machine and very little residual Si. Great for thermal properties and weight considerations. Equivalent to 6061 billet. Fastest building and most cost effective material.

Titanium (Ti64) – i3D™ mastered DMLS titanium and recommends it for weight reduction and strength considerations. No waste 3D printing makes Titanium a highly cost effective DMLS material.

Inconel 718 – Widely used for aerospace applications. Highest reflectivity with excellent strength and corrosion resistance. Medium build speed with properties much like steel.

Stainless Steel (15-5, 17-4 & 304) – Strong and great corrosion resistance. The one draw back is that steel has a slow build time and is often a less cost effective option.

Maraging (tool) Steel – Hardens to 58 HRC after heat treat. Excellent choice for mold tool and production tool needs.

By Erin Stone

DMLS Matures from Rapid Prototyping to Production Parts

DMLS Matures from Rapid Prototyping to Production Parts

Direct Metal Laser Sintering (DMLS) 3D printing was featured first as an excellent rapid prototyping tool and then as a new manufacturing advancement in two 3D Printing Industry News items over the past two days. So which is it, prototyping or production parts? The fantastic news for designers, engineers, and production managers is that DMLS has been a phenomenal rapid prototyping tool for functional metal parts for years and now it is also a proven metal manufacturing method for complex parts ranging from turbines to heat exchangers.

DMLS Rapid Prototyping Saves Valuable Weeks of Development Time

As Scott Grunewald points out in his article, “This (DMLS) rapid prototyping allows newly developed components to be test installed, articulated and checked for clearance and movement tolerances. The final models can then be used to create the drawings and manufacturing guides that define construction materials, inspection requirements and post processing features. This portion of the process is so fast that the final part is just being completed by the time the approved drawing is released.” Innovations can be tested in working models, using titanium, inconel, tool steel, stainless steel or aluminum and then tweaked and retested in a matter of days. DMLS parts near 100% density, making them comparable or denser than machined or cast parts. 3D metal printing, like other 3D printing methods allows multiple 3D models to be built at the same time without contending with expensive CNC programming time. Aerospace giants like GE and Lockheed Martin have invested in hundreds of DMLS machine to take advantage of this competitive advantage.

DMLS is Now a Proven Manufacturing Method for Production Parts

While GE and other aerospace players have used 3D prototyping for years, they have also increasingly starting using DMLS for production runs. Sigma Components’s news  about its funding and partnership with Rolls Royce to utilize DMLS to manufacture complex functional parts for use in end products highlights the untapped potential 3D manufacturing brings to production. DMLS has progressed in its speed and reliability to the point of becoming a viable process for Sigma to “…redesign and develop lightweight pipe end fittings that use 3D printing and additive manufacturing to reduce the weight of traditionally manufactured components and minimise part and manufacturing costs.” However, to achieve its full potential, designers and engineers must shift their perspective to Design-for-3D, eliminating traditional manufacturing design constraints.

i3D MFG™ is focused on helping its customers realize these manufacturing advantages. With a full team of 3D engineers, as well as its designation as the EOS Material Process Application partner, we not only offer 3D manufacturing, but new DMLS powder development, parameter development, and of course, rapid prototyping.

By Erin Stone

Direct Metal Laser Sintering offers Optimal Medical Implant Synergy

Direct Metal Laser Sintering offers Optimal Medical Implant Synergy

Spinal implants manufactured using 3D metal printing, or Direct Metal Laser Sintering (DMLS), have been the standard OEM sample to highlight complex latticed geometries. The question being, have any of those cool looking implants been used in the real world? Great new for all DMLS users and manufacturers – 4WEB Medical announced this week that 3,000 of their DMLS spinal implants have been successfully used by surgeons. Even better, the relatively rough surface finish associated with 3D printed metal parts creates an even better patient outcome. According to 4WEB, ” The truss implant designs have a distinctive open architecture, which allows for up to 75% of the implant to be filled with graft material to maximize bone incorporation.The 4WEB Medical ALIF device has a bi-convex surface that brings the implant and graft material closer to adjacent bone across the entire end plate rather than just around the outside edge. This in addition to a unique implant surface texture dramatically improves initial fixation and reduces the chance of migration.”

As a DMLS manufacturer, i3D MFG™ works closely with its clients on surface finish requirements, a commonly misunderstood piece of 3D metal printing. 3D metal parts are nearly 100% dense, allowing for any post process associated with machined or cast parts; however, clients often expect parts to come straight off the DMLS machine with near mirror polish. The reality is that the initial surface finish for a DMLS part before post process ranges form 125-300 Ra depending on the metal. 4WEB’s spinal implant leaves the rough surface which enhances the effectiveness of the implant. This is a huge shift in how we think about design, incorporating roughness as an innovative tool. Not all applications will achieve this type of synergy between the raw DMLS part and function, but as we shift towards design-for-3D, it’s worth taking note of the match between DMLS and medical implant advancements.

Image from: 4webmedical.com

i3DMFG Metals For Additive Manufacturing

By i3d

Oregon Welcomes i3D MFG™ 3D Metal Printing

Oregon Welcomes i3D MFG™ 3D Metal Printing

Why would a new small business opening in The Dalles, Oregon be newsworthy to Aerospace Manufacturing and Design Magazine? Aerospace is big in the Pacific Northwest and the UAV/UAS giant Insitu is located 20 minutes from i3D™ Manufacturing’s Direct Metal Laser Sintering (DMLS) factory. 3D metal printing has emerged as a critical component in aerospace, rocket, and UAV design and manufacturing, but until 2014, there were no Northwest DMLS service providers. Insitu, Boeing, and the like were forced to use services thousands of miles  away, reducing some of the lead time and cost advantages 3D printing is known for. Oregon is defined by innovation and i3D™’s 3D printing technology is at the forefront of advanced and additive manufacturing. DMLS moves 3D printing from the prototyping realm into true production parts manufacturing. DMLS parts are used in final assemblies by Boeing, Lockheed Martin, GE, etc. In addition to aerospace, i3D™ also provides parts for medical and dental device applications, firearms accessory manufacturers, the energy and recreational gear industries, and automotive parts users.

The Future of Manufacturing

In 2013, manufacturing accounted for 28% of Oregon’s economy, over $65 billion in output. So, its not surprising that the Portland Tribune and Portland Business Journal also featured i3D™ in their Summer 2014 publications. As opposed to traditional, or subtractive manufacturing where parts are carved out of billet, the additive manufacturing process starts with 20-40 micron layers of powdered metal and uses a laser to melt thousands of micro layers together, one layer at a time based on a 3D CAD model – adding material only where the model dictates.  The no-waste process enables parts to be built that cannot be traditionally manufactured, including complex geometries, lattice and honeycomb structures, conformal channels, and single part builds of multi-part assemblies. i3D™ prints stock metals including Titanium, Aluminum, Inconel, 15-5 and 17-4 Stainless Steel, and Maraging Tool Steel as well as custom powders created for specific customer applications. The Dalles has a long history of metal manufacturing and gave i3D™ a warm welcome to its community and the Columbia River Gorge region. Both The Dalles Chronicle and Gorge Technology Alliance celebrated i3D™’s headquarters locating in Oregon. 

By i3d

3D Printed “Buzzing” Handlebars on Your Titanium Bike

When INDUSTRY and Ti Cycles designed their entry for the Oregon Manifest bike design project, their vision required next generation technology and exotic metals that would then be hand-crafted by artisan bike makers into a premier urban commuter bicycle. Creating a beautiful balance between local artisan and new technology meant designing in a completely different mindset – enter, 3D printing. Keeping it local, INDUSTRY brought Oregon-based i3D™ Manufacturing on board to 3D print components that simply could not be manufactured using traditional methods. Included in these custom parts were intricate handlebars housing a bluetooth smartphone app called My Bike which monitors bike maintenance and alerts you to when a light needs to be replaced or when something goes wrong with your brakes. Another software, Discover My City, has a series of curated rides from five of Portland’s coolest residents, which suggests where to ride, eat and shop. The rider simply gets “buzzed” with the alerts, keeping them connected as they commute. Ti Cycles signature tubing Titanium frames are the perfect way to make sure no wires interfere with the rider and preserve the aesthetics of the bike design. The curves and junctions of parts of the frame also needed to be 3D printed because the tubing could not be traditionally manufactured to hold the lines properly. i3D™ printed fork crowns, front and rear dropouts, head tubes, bottom brackets, and seat clusters for the bike. The titanium printed part welds showed superior strength and seamlessly integrated with the tubing. 3D printing and phone apps aside, in the end, it was the skill and craftsmanship of Ti Cycles that brought the high tech and custom bike manufacturing together to create a perfect blend of utility and elegance. Go see what all the “buzz” is about at  3ders.org, Engadgettreehugger, and Bike Portland.

 

i3DMFG 3D Printing Services Recreational Industry

By i3d

i3D MFG™ 3D Prints Titanium Bicycle

i3D™ Manufacturing joined INDUSTRY and Ti Cycles in creating a 3D printed titanium bicycle as Portland’s entry for the 2014 Oregon Manifest Bike Design contest. 3D printing is a perfect solution for those wanting to manufacture a tailor-made product. Whether aesthetics, function, weight reduction, design innovations, or exotic metal cost effectiveness are the goals, additive manufacturing is a game-changer for design and manufacture. Direct Metal Laser Sintering (DMLS) produces functional production parts by fuses 20-40 micron layers of metal powders together from a 3D CAD model. Multiple CAD models can be built on a single run, facilitating cost effective single part production, allowing for multiple versions of the same part to be run simultaneously for evaluation, and reducing lead times from weeks or months to hours and days. Exotic metals like Titanium and Inconel become cost effective because DMLS is a no waste process – after the micro lasers are laser melted together, the left over powder is vacuumed back into the machine and reused. Traditional manufacturing of these costly metals often resulted in as much as 70% scrap, making Titanium cost prohibitive despite its perfect match for the bicycle industry’s weight and strength property requirements. While working with Titanium proved more difficult than other DMLS metals, i3D MFG™ added supports and geometry adjustments for structural rigidity and thermal dissipation to offset tolerance and creep issues created by mass, height, and stress relief. Custom latticed parts, innovative fork crown geometries, and organic frame lines were all possible using 3D printing. Design-for-3D erases all traditional manufacturing limitations, including minimum order quantities, machine lines, and complex assemblies. Furthermore, the weldability and post process properties of 3D printed parts is generally better than cast parts and comparable to machined parts.  Read 3D Print News’ interview with Ti Cycles or designboom’s article for details on this exciting Titanium bicycle project.

By i3d

Additive Manufacturing for Firearms

Additive Manufacturing Helps Oregon Firearms Industry Stay Innovative

With big game hunting season winding down in Oregon, it seems appropriate to give a nod to our friends in the firearms industry. Oregon has a long and rich history in firearm accessory manufacturing. Its premier manufacturers epitomize innovation and quality – think Warne Scope Mounts, Nosler, Leupold, and Grovtec. These companies were born from Northwest outdoorsmen’s desire for quality products with superior performance. They’ve become household names today because of their focus and commitment to innovation.

Additive manufacturing, or 3D printing, is helping Oregon’s firearm industry stay a step ahead of its competition. Complex designs that are expensive or even impossible to traditionally manufacture can be 3D printed in metal using Direct Metal Laser Sintering (DMLS) offered by i3D MFG™ and other similar service bureaus. Custom part builds, rapid market launches, and small batch production are all cost effective mean of production using 3D manufacturing. Unlike previous 3D print technologies, DMLS does not use binding agents, therefore, parts near 100% density, and are comparable to machined and high quality cast parts. In fact, this past summer both the FBI and the USSOC commenced in firearms projects using DMLS.

Additive Manufacturing benefits for Firearms

Latticed geometries, conformal cooling lines, organic channels, and single part production of multiple part assemblies are common 3D design features. Since 3D manufacturing is a no-waste process, exotic metals offering superior strength and heat properties are cost effective. Titanium, Inconel, and Steel are the most widely produced DMLS metals in the firearms industry. Lead times with 3D printing allow firearm accessory manufacturers to reduce R&D and market launch to weeks or months compared to months and years. Multiple versions of a design can be 3D printed in the same build, allowing R&D version testing or custom production in days.

i3D™ is proud to be innovating along with Oregon’s industry leaders. Oregon’s proud tradition of recreational firearms and firearm accessory manufacturing will continue to grow and beat its competitive because of their forward thinking and adoption of next generation technology in product development. We hope all the hunters out there had a successful season!

1 2
Material Process Applications
Is DMLS Metal Powder the Real Thing?
Direct Metal Laser Sintering offers Optimal Medical Implant Synergy
i3DMFG Metals For Additive Manufacturing
Oregon Welcomes i3D MFG™ 3D Metal Printing
3D Printed “Buzzing” Handlebars on Your Titanium Bike
i3DMFG 3D Printing Services Recreational Industry
i3D MFG™ 3D Prints Titanium Bicycle
Additive Manufacturing for Firearms