i3D MFG Services Request a Quote
I3DMFG™I3DMFG™

By Stephanie Wehrhan

What can be 3D printed? Talking Materials

What can be 3D printed? Talking Materials

There are many options for metal materials in the world of 3D printing. The most common metals used to print parts are Aluminum, Titanium, Inconel, and Stainless Steel. Each of these metals hold unique properties that set them apart from one another. Depending on the desired use of the part, certain materials are more sought after for specific applications and performance vs others.

Aluminum is widely used in the Aerospace industry because of its lightweight material properties. Aluminum has a high strength-to-weight ratio, low density, and natural anti-corrosive properties meaning it doesn’t degrade due to oxidation. AlSi10 is i3D MFG’s most common aluminum powder and generates a high success rate in parts with thin walls and complicated geometries. Another option available is Al6061, which is a highly ductile and cost effective aluminum that prints more than 50% faster than AlSi10. For this reason, it’s becoming more popular in the AM industry for customers seeking faster build times.

Titanium is another popular choice for customers seeking high corrosion resistance with their parts. Similar to Aluminum, Titanium provides low weight and high strength making it an ideal material for Aerospace and Automotive applications. Titanium is commonly used as an alloying element with Aluminum or Steel to achieve specific properties in terms of ductility, strength, and hardness. Ti64 powder is well suited for projects requiring weight reduction and bio-compatibility. Ti64 typically hardens to 36-41 HRC after heat treatment.

Inconel comes from a family of high-performance alloys, known for its strength and resistance to thermal degradation. Because of this, Inconel alloys (such as IN625 and IN718) hold up when used in high temperature applications. Industries such as the Aerospace and Automotive industry use Inconels because they provide superior heat resistance with a typical heat treatment hardness of 40-47 HRC.

Similar to Inconel alloys, Haynes 282 is a super-alloy developed for high temperature structural applications and provides excellent resistance to strain-age cracking. Haynes 282 also has high ductility making it easy to fabricate and machine, because of this it is a popular material choice for the Aerospace and Automotive industry. Haynes 282 powder typically hardens to 20-32 HRC after heat treatment.

Stainless Steel is commonly sought out for projects that require high resistance to heat and corrosion. Our stainless steel powders are medical grade and typically harden to 40-45 HRC after heat treatment. Due to its characteristics, Stainless Steel is a particularly good choice for parts requiring high strength and hardness. Stainless steel parts can be machined, welded, polished, and coated making them ideal for corrosion resistant applications.

Whatever your desired application is, i3D can help assess your needs and provide suggestions for materials that will cause your project to excel. From prototypes to production ready parts, we’re happy to navigate customers through our selection of high-performance metals to help pick the right material for any given project.

By Stephanie Wehrhan

Additive Manufacturing and Post Processing – A synergetic relationship

In the world of Additive Manufacturing, 3D printing is usually the first thing that comes to mind. However there is something equally as important in AM, and that’s strong relationships with post processing vendors. Once a part has been 3D printed, they are often not complete for a customers proposed application. This is why we rely on a synergetic relationship with post processing services to help us provide a complete and finished product that meets the customers criteria. The most common post processing services utilized in the AM industry today are Post-Machining, HIP treatment, and Anodizing.

Our friends at Cascade Precision Inc, an Oregon based AS9100 and ISO9001 certified Post-Machining company help to post process parts that require further assistance before they are considered complete. Post-Machine shops utilize high precision CNC machines to either lath or mill a part to meet given parameters or tolerances.

When parts need their density increased, heat combined with pressure is applied to the material from all directions in a manufacturing process called HIP (Hot Isostatic Pressing). Argon is the most commonly used pressure medium. After optimal HIP treatment is applied to parts tensile strength can increase significantly based on the ductility desired by the customer.

When aiming to give a part a certain cosmetic look, customers rely on anodizing services. Anodizing hardens and coats parts to make them tougher and give them a specific color chosen by the customer. Anodizing can differ between soft and hard coating, soft coating provides a thin coating while hard coating provides a thicker coating to help prevent corrosion.

Looking to the future, the importance of maintaining a synergetic relationship with post processing services cannot be overlooked. This relationship is crucial to meet the dynamic demands of the AM industry. i3D is committed to establishing strong working relationships with post processing services in order to provide the best product possible to suite our customers needs.

By Stephanie Wehrhan

i3D April News – COVID 19

Greetings,

Over the past several weeks, life has changed for all of us. From social distancing to adapting to a new normal we all are adjusting to a different way of life built on hope, creativity, and community while bound by one question: “When is this going to end?” The answer is we don’t know.

We do know that some things won’t change, i3D is proud to be an essential business. Our staff has been closely following all CDC recommended guidelines for keeping workplaces clean and safe. Policies have been established for worker protection to ensure the best possible sanitation of all our facilities.

Our normal operating hours have not changed. We’re here for our customers to help provide the best DMLM and DMLS printing available. We currently have open availability in our machine schedule, if you wish to submit a quote you can do so online at i3dmfg.com or simply contact one of our Sales Engineers below to further assist with any questions you may have.

 

Stephanie Wehrhan

(541) 480-1427

fjrueuna@v3qzst.pbz

 

Robbie Rosten

(541) 678-3468

eebfgra@v3qzst.pbz

 

Thank you for choosing i3D for your services. We value you and your business, and want to continue providing excellent support during these unprecedented times.

Sincerely,

 

i3D Team

 

By i3d

i3D Collaboration with Penn Electric Racing

Congratulations to Penn Electric Racing who placed third overall at FSAE Lincoln, along
with second in the Autocross event, third in the Endurance event, and first in the
Cummins Advanced Technology Award.  I3D collaborated to create their in-hub 4-
wheel-drive powertrain, with DMLS printed motor housings which improved
performance. Penn Electric has been able to validate that this powertrain increased
power output and cornering ability, specifically aiding in the Autocross and Endurance
events. Additionally, the integrated cooling channels and lightweight AlSi12 material in
the housings have allowed us to optimize our performance and stay at the forefront of
the competition.

3D printing allows for tailored designs and specifications in a variety of materials that
would otherwise be costly or impossible to create. i3D is an Oregon based AS9100D
Certified AM contract manufacturer specializing in Disruptive Metal 3D Printed
production parts. We stock 16 metal powders including Aluminum, Titanium, and
several Super Nickel Alloys.  Attached is a list of our current metal powders. Our
strengths include expertise in custom development with our 7 EOS M290 DMLM and 1
EOS M400.4 machines.  Achieving better surface finishes, organic geometries
and tailored density and porosity is our specialty. Our engineers focus exclusively on
Metal 3D Printing and have developed extensive tribal knowledge around DMLM
design and strategies for best success.

I3DMFG Additive Manufacturing EOS

By i3d

How 3D Metal Printing Works (Video)

How 3D Metal Printing Works

So how does 3D metal printing work? Sometimes it’s good to get back to the basics and explore one of the questions many people have about 3D printing. We have all seen the press, the hype and some of the incredible things 3D printing can do, but 3D metal printing (Additive Manufacturing) stands on it’s own when it comes to quality and leadership in paving the way for the new era and generation of manufacturing.

With that, our friends over at Praxair, Inc. have produced this incredible video on how 3d metal printing actually works.

Rocket-Chamber

By i3d

Delphi Precision Imaging Leads Additive Manufacturing Industrial CT Inspection

Delphi Precision Imaging Leads Additive Manufacturing Industrial CT Inspection

One of our incredible partners, Delphi Precision Imaging has just released new videos and materials for their work in Industrial CT Inspection. They are leading the way in Quality Control and Inspection in the 3D Metal Printing industry (Additive Manufacturing). This comes at a critical time when the industry itself is being shaped in terms of quality control, inspections, and overall ability to provide advanced analysis of parts.

Check out Delphi’s newest PDF’s and Videos:

By i3d

I3DMFG Contributes To Industrial CT For Use In Additive Manufacturing

I3DMFG Contributes To Industrial CT For Use In Additive Manufacturing

I3DMFG has been mentioned in an article alongside Delphi Precision Imaging with regards to new part designs that would be impossible with traditional machining methods  and require new measurement tools.

Every day additively manufactured (AM) parts are being used in new applications as the industry rapidly matures. As additive parts become more economical for small productions runs and move beyond use solely in tooling and prototyping, the need to nondestructively inspect parts for quality increases as well.

“Industrial CT is an excellent inspection method for additive parts and components from the automotive, medical implant and aerospace industries where quality and a high degree of reliability are critical,” says Blake Chenevert, president of Delphi Precision Imaging. Computed tomography (CT) has some advantages over other nondestructive inspection methods for additive manufacturing.

There are a lot of challenges currently facing the Additive Manufacturing industry such as defects, parts coming out as intended, yields, and cost/benefits. The article addresses each of these topics head on and in the area of Quality Control Inspection, I3DMFG had this to say,

“As quality requirements evolve inside of a disruptive industry like additive manufacturing, finding tools and innovative approaches to using those tools to advance nondestructive testing methodology is critical,” says Erin Stone, president of I3D MFG, a DLMS printer.

The article continues on to discuss the many areas of quality control and I3D MFG is leading the way to help shape many of these standards as well as creating many of their own which are being recognized industry-wide.

SEDS I3DMFG

By i3d

Successful Rocket Test: SEDS UC San Diego

We were recently notified by SEDS UC San Diego that they had a successful test with their Colossus First Hotfire rocket. EDS UCSD, or Students for the Exploration and Development of Space at the University of California, San Diego, is a collection of motivated, passionate students determined to complement our studies with meaningful projects.

In the video below you can see the rocket launch and feel the excitement of the moment. They credit I3DMFG at the end and we couldn’t have been more happy to be a part of this. Here’s a quote from one of the students:

Over the weekend we conducted a successful test of our rocket engine, and wanted to share the good news! The engine is still in good shape after the test and we’re preparing to push it to it’s limits in September. Thank you for supporting this project, our hard work has paid off!

We can’t wait to see them push the limits!

SEDS I3DMFG

By i3d

I3DMFG Helps Sponsor SEDS Static Rocket Engine Test

I3DMFG Helped Sponsor A successful static rocket engine test by providing a 3D Metal Printed Injector for Colossus which used the Ignus-II engine!

From the SEDS Post on LinkedIn:

The test was conducted on June 16th, 2018 and marked the first successful attempt of a hot-fire of both Colossus and Ignus-II. This is a result of the culmination of over 2 years of work put in by over 60 SEDS members and marks the beginning of the next TEN years, where Colossus will be assisting collegiate rocketry teams everywhere to collect better data on their own engines.

I3DMFG was proud to be a part of this project along with several other sponsors. You can watch the results of this incredible launch in this stunning video.

Additive Manfactured Haynes 282 Rocket chamber

By i3d

Delphi Precision Imaging & I3DMFG on Display at SAMPE

The Society for the Advancement of Material and Process Engineering 2018 exhibition May 21st – May 24th will have a display of a Part-to-CAD comparison of an additively manufactured Haynes 282 rocket chamber. This collaboration between Delphi Precision Imaging and I3D MFG will be on display at SAMPE 2018 Tuesday and Wednesday May 22-23rd at the Long Beach Convention Center. Stop by booth J58 to check it out.

1 2 3 4 7
i3D Collaboration with Penn Electric Racing
I3DMFG Additive Manufacturing EOS
How 3D Metal Printing Works (Video)
Rocket-Chamber
Delphi Precision Imaging Leads Additive Manufacturing Industrial CT Inspection
I3DMFG Contributes To Industrial CT For Use In Additive Manufacturing
SEDS I3DMFG
Successful Rocket Test: SEDS UC San Diego
SEDS I3DMFG
I3DMFG Helps Sponsor SEDS Static Rocket Engine Test
Additive Manfactured Haynes 282 Rocket chamber
Delphi Precision Imaging & I3DMFG on Display at SAMPE