

EOS NickelAlloy IN718 for EOSINT M 270 Systems

A number of different materials are available for use with EOSINT M systems, offering a broad range of e-Manufacturing applications. EOS NickelAlloy IN718 is a heat resistant nickel alloy powder which has been optimized especially for processing on EOSINT M 270 systems. Other materials are also available for EOSINT M systems, and further materials are continuously being developed - please refer to the relevant material data sheets for details.

This document provides a brief description of the principle applications, and a table of technical data. For details of the system requirements please refer to the relevant information quote.

1 Description, application

EOS NickelAlloy IN718 is a nickel based heat resistant alloy in fine powder form. Its composition corresponds to Inconel[™] 718, UNS N07718, AMS 5662, AMS 5664, W.Nr 2.4668, DIN NiCr19Fe19NbMo3. This kind of precipitation-hardening nickel-chromium alloy is characterized by having good tensile, fatigue, creep and rupture strength at temperatures up to 700°C. 718 alloy has also outstanding corrosion resistance in various corrosive environments.

This material is ideal for many high temperature applications such as gas turbine parts, instrumentation parts, power and process industry parts etc. Material also possess excellent cryogenic properties and potential for cryogenic applications.

Standard processing parameters use full melting of the entire geometry, typically with 20 μ m layer thickness. Parts built from EOS NickelAlloy IN718 can be easily post-hardened to 40-47 HRC (370-450HB) by precipitation-hardening heat treatments. In both as-built and agehardened states the parts can be machined, spark-eroded, welded, micro shot-peened, polished and coated if required. Unexposed powder can be reused.

Typical applications:

- Aero and land based turbine engine parts
- Rocket and space application components
- Chemical and process industry parts
- Oil well, petroleum and natural gas industry parts

2 Technical data

General process data

Minimum recommended layer thickness	20 μm 1.6 mil
Typical achievable part accuracy [1]	
- small parts [1]	± 40 – 60 μm
	16 - 24 mil
- large parts	± 0.2 %

Heat treatments and dimensional stability	
Shrinkage due to:	
- solution anneal at 980 °C + air (/argon) cooling	tbc
 ageing at 720 °C 8 hours + 620 °C 8 hours 	tbc
Min. wall thickness [2]	0.3 - 0.4 mm
	8 - 20 mil
Surface roughness	
- after shot-peening	Ra 4 - 6,5 μm, Ry 20 - 50 μm
	Ra 0.16 – 0.25, Rz 0.78 – 1.95 mil
- after polishing	Rz up to < 0.5 μm
	Rz up to < 0.02 mil
	(can be very finely polished)
Volume rate [3]	
- standard parameters (full density)	2 mm³/s

- [1] Based on users' experience of dimensional accuracy for typical geometries, e.g. \pm 40 µm when parameters can be optimized for a certain class of parts or \pm 60 µm when building a new kind of geometry for the first time.
- [2] Mechanical stability is dependent on geometry (wall height etc.) and application
- [3] Volume rate is a measure of build speed during laser exposure. The total build speed depends on the average volume rate, the recoating time (related to the number of layers) and other factors such as DMLS-Start settings.

Material composition		Ni (50-55 wi	t-%)
		Cr (17.0-21.0 wt-%) Nb (4.75-5.5 wt-%)	
		B (≤ 0.006 v	wt-%)
		Fe (bal)	
Relative density with standard parameters		approx. 100	%
Density with standard parameters		8.2 g/cm ³ 0.296 lb/in ³	
Mechanical properties of pa	arts (room temperat	ure)	
	As built	After solution anneal and age hardening per AMS 5662 [4]	After solution anneal and age hardening per AMS 5664 [5]
Ultimate tensile strength [6]	_	min. 1276 MPa (185 ksi)	min. 1241 MPa (180 ksi)
	typ. 980 ± 50 MPa (142 ± 7 ksi)	typ. 1400 ±100 MPa (203 ± 15 ksi)	typ. 1384 ±100 MPa (201 ± 15 ksi)
Yield strength (Rp 0.2 %) [6]		min. 1034 Mpa (150 ksi)	min. 1034 MPa (150 ksi)
	typ. 634 ± 50 MPa (92 ± 7 ksi)	typ. 1150 ±100 MPa (167 ± 15 ksi)	typ. 1239 ±100 MPa (180 ± 15 ksi)
Elongation at break [6]	31 % ± 3 %	min. 12 %	min. 12 %

		typ. 15 % ± 3 %	typ. 18 % ± 3 %
Young's modulus [6]		170 GPa ± 20 GPa (26.5 msi ± 3 msi)	
Hardness	approx. 30 HRC (287HB)	approx. 47 HRC (446 HB)	approx. 43 HRC (400 HB)

- [4] Heat treatment procedure per AMS 5662: <u>Step1</u>. Solution Anneal at 980°C for 1 hour, air (/argon) cool. <u>Step 2</u>. Ageing treatment; hold at 720°C 8 hours, furnace cool to 620°C in 2 hours, hold at 620°C 8 hours, air (/argon) cool.
- [5] Heat treatment procedure per AMS 5664: <u>Step1</u>. Solution Anneal at 1065°C for 1 hour, air (/argon) cool. <u>Step 2</u>. Ageing treatment; hold at 760°C 10 hours, furnace cool to 650°C in 2 hours, hold at 650°C 8 hours, air (/argon) cool
- [6] According to ISO 6892:1998.

Thermal properties of laser-sintered parts

Coefficient of thermal expansion	tbc
Thermal conductivity	tbc
Maximum operating temperature for parts under load	650 °C 1200 °F
Oxidation resistance up to (according to literature)	980 °C 1800 °F

The quoted values refer to the use of these materials with EOSINT M 270 systems according to current specifications (including the latest released process software PSW and any hardware specified for the relevant material) and operating instructions. All values are approximate. Unless otherwise stated, the quoted mechanical and physical properties refer to standard building parameters and test samples built in vertical orientation. They depend on the building parameters and strategies used, which can be varied by the user according to the application.

The data are based on our latest knowledge and are subject to changes without notice. They are provided as an indication and not as a guarantee of suitability for any specific application.

EOS[®], EOSINT[®], DMLS[®], DirectTool[®] and DirectPart[®] are registered trademarks of EOS GmbH.

 $\ensuremath{\mathbb{C}}$ 2008 EOS GmbH – Electro Optical Systems. All rights reserved.