I3DMFGI3DMFG

DMLS News

By i3dadmin

3D Printing Aerospace With Donald Godfrey

3D Printing Aerospace With Donald Godfrey

Donald Godfrey of Honeywell is a pioneer is the additive manufacturing segment, and more specifically the use of 3D metal printing (DMLS) for Aerospace parts at Honeywell. He recently sat down for an interview (podcast) and discussed 3D printing Aerospace in regards to how rapid prototyping is providing incredible time and cost savings as well as detailing what engineering students need to know and be doing in school right now if they want to pursue this field.

Don is the chair to the Honeywell Aerospace Intellectual Property Steering Committee for Additive Manufacturing Technology. He’s responsible for the integration of 3D printing into the business cultures, really trying to find ways to put that into different areas within the company.

During the interview, we learn that Honeywell has really been a huge champion for 3D printing and specifically in the aerospace segment.  Don gave a great example,

Let me give you an example. When we do turbine blades, we don’t do turbine blades and it’s not our intention to do turbine blades in production. But for prototype, we do. It may take three years to get your hands on a production blade. Typically, what happens is that after you get that cast blade and it’s machined perfectly to print, you’ll flow air through it or you’ll put it in an engine test. Some engineer will want to go and change it.

That is a real problem because the tooling, to get to that point, you’ve already spent $600,000, $700,000, you’ve waited three years and now somebody wants to go change it. That means that tool that you just spent three quarters of a million dollars on, somebody’s out there machining on it. With this technology, what I can do is print those blades in about two weeks.

I can print what we call a rainbow of blades. Meaning, I can make some just a little bit different than others. Maybe the openings are a couple of thousandths larger or maybe the shapes just a slight differentiation from the baseline. I can do all of that in less than a month. Then, I can, say, if I made five different shapes of blades, I can take the best blade and then take that CAD file, go back to the casting house and say, “Make this.”

That’s some really good insight into what the future of this industry is. Don had a lot more to say and some incredible examples of how DMLS is shaping an entirely new generation of engineers and manufacturing industries.  You can listen to the podcast here.

 

By i3dadmin

3D Printing Will Change Design and Manufacturing In 2017

3D Printing Will Change Design and Manufacturing In 2017

While much of the focus lately has been on Artificial Intelligence and Virtual Reality as well as machine learning and big data, 3D printing (Additive Manufacturing) is developing into something just as significant.

In 2017, experts believe that Additive Manufacturing, 3D Printing, will have a huge impact on how we design and make things; even more so than it already has. Additive Manufacturing works by depositing layers of material (generally metal or plastic), to a template, and then lasering that material into place and repeating the process to build the required product.

Using Additive Manufacturing you can make anything from jet engine parts to replacement body parts to bikes and firearms.

3D Printing has had a lot of attention on the consumer side, however, it is rapidly growing as a major player and potential replacement to manufacturing in industry.

Two recent examples reported in Forbes,

Computerworld reported that researchers at MIT have created 3D-printed graphene, the one-molecule-thick wonder material, to make a material that they say is “lighter than air” but 10 times as strong as steel. If it can be scaled up, it could help to lightweight products such as aircraft, cars and filtration devices, saving huge amounts of fuel, costs and carbon emissions.

At the other end of the scale, CNN reports on a Dubai-based start-up called Cazza that says it can 3D print 200m2 of concrete a day, using a 3D-printing crane it calls the “Minitank.” By automating the process, the company says it can build structures more than 50% faster than conventional methods allow.
Siemens is major player and has been leading the industry making 3D printed burners for its turbines which creates one component that originally took 13 different parts with traditional subtractive manufacturing.
3D printing is also set to revolutionize maintenance and repair operations as well.
It’s good to note that Additive Manufacturing is not the answer for every situation. It currently remains feasible for high-value, complex, limited edition products and components.
Experts generally agree that over the next five years, Additive manufacturing will allow industry to cut costs by 50% and dramatically increase innovation.

By i3dadmin

Historic 3D Printed Rocket Engine Flight by Bagaveev Corporation

Historic 3D Printed Rocket Engine Flight by Bagaveev Corporation

I3D MFG 3D prints rocket thrusters in metal for Bagaveev Corporation. Bagaveev wanted to show how far the technology has moved and relevant Powder Laser Forging is by publishing a video on YouTube that shows their historic test of its 3D printed rocked engine flight.

  Read more

By i3dadmin

News: GE Opens $40 million Center For Additive Technology Advancement

GE Opens $40 million Center For Additive Technology Advancement

With all of the big names getting the attention in 3D printing, many are surprised to learn that GE (General Electric) is also a big player.  GE is pretty cautious when it comes to large investments in technology as they have seen trends come and go, however, their $40 million investment this past week in a facility for Additive Technology (3D printing) confirms that they see the writing on the wall: Additive Manufacturing is not a fad or trend, it’s here to stay.

One really exciting thing that will come to fruition is the fact that GE never opens a facility just for the sake of using a technology; they will advance it further and that’s really why this announcement is such a big deal.  GE opened the new center in Pittsburgh which was exciting to the city because it puts them on the map as a leader in 3D printing and the advancements that come from it.

“We’ve tapped into America’s best-kept secret,” says Jennifer Cipolla, who runs CATA, in regards to Pittsburgh, where Tesla and Google have also opened offices.

“We think Pittsburgh has the chance to be one of the four or five destinations for advanced manufacturing,” adds GE Chief Executive Officer Jeff Immelt.

The new facility is funded by each of the GE businesses, with the goal of integrating 3D printing for all. GE has historically been very involved with 3D printing to create fuel nozzles for jet engines.

 “Our mission is to ensure additive technology becomes a standard part of the tool kit for each business,” Cipolla says. “By having a shared facility, they can share the cost burden and we can advance the technology across the entire company much more rapidly than if they were to invest individually.”

The goal is to push the limits of additive manufacturing and stay at the forefront of innovation within the industry. The CATA industrialization lab is meant to promote this mission, allowing GE businesses to bring in their 3D printing concepts and optimize them, as well as working to bring them to fruition.

If there was any doubt about the future of additive manufacturing and DMLS, then this move by GE should cement the fact that it’s not only here to stay but it’s going to become the standard in metal printing.

By i3dadmin

FDA Releases New Guidance For 3D Printed Medical Devices

FDA Releases New Guidance For 3D Printed Medical Devices

Due to concerns over the various qualifications processes and impact of different materials, the FDA has been slow to approve the use of 3D printing when it comes to medical devices and drugs.  In order for the process to move quicker and more smoothly, the FDA has [finally] released a draft guidance for 3D printed medical devices.

Since technology typically moves a lot faster than most agencies can keep up with, this guidance comes at a time when then FDA has been been confronted with both the 3D printing of drugs and medical devices.

To date, there have only been 85 3D printed medical devices that have been approved by the FDA.   Back in March, a 3D printed tritanium PL posterior lumbar cage was approved. But so far few of them include high-risk devices that require premarket approval. The FDA feels that this group is more likely to benefit patients in the short term, so their new draft guidance is fully focused on these medical devices. Its goal? To provide developers with more insights into FDA thinking about the technical considerations and validation processes that 3D printed devices require.

The new FDA guidance is focused on two of the most important areas of development: design and manufacturing, and device testing.  The benefit here is that this new draft guidance provides insights into the most complicated parts of the approval process.

For 3D printers, this means they will need to “clearly identify each step in the printing process… from the initial device design to the post-processing of the final device.”  The developers and clients who might hire outsourced 3D printers also need to understand all upstream effects of the different manufacturing steps.

“For example, the ratio of recycled to virgin powder can affect melting properties, which affects the energy needed to create consistent bonding between layers, which in turn affects [a device’s] final mechanical properties,” they write in the draft.

This new FDA draft reiterates the fact that 3D metal printing holds numerous advantages for the development of medical devices.  The FDA writes this in their draft,

“[3D printing] has the advantage of facilitating the creation of anatomically-matched devices and surgical instrumentation by using a patient’s own medical imaging. Another advantage is the ease in fabricating complex geometric structures, allowing the creation of engineered porous structures, tortuous internal channels, and internal support structures that would not be easily possible using traditional (non-additive) manufacturing approaches…”

The full draft can be found here in our library.

By i3dadmin

3 Big Reasons Why Metal 3D Printing Is Growing

3D Metal Printing (DMLS) is getting bigger.  In a recent article published by 3D Printing Industry, author Davide Sher highlights some of the reasons why the 3D Metal Printing industry isn’t shrinking or declining, it’s getting much bigger.

One of the reasons the 3D metal printing industry is getting bigger is competition. When you see tough competition, this indicates the need for the services and equipment or there wouldn’t be anyone in the market. There are currently about eight players in the space and more are coming onboard.  EOS is one of the market leaders along with Concept Laser.

Second, there are increasingly more technologies being used for 3D Metal printing. There are other technological approaches, for example, like the binder jetting technology proposed by ExOne and Digital Metals. Although binder jetting needs post processing, the technology can do things that powder bed fusion (currently the most widely used method) cannot.  These newer technologies will open yet unseen possibilities for thin walls, high detail, smooth finish, and fully dense parts that may even be made up of multiple materials in the future.

Third, there is actual demand for production parts coming out of 3D metal printing.  Both the automotive industry and the aerospace industry have began making parts not just for prototyping but actual production.

In the aerospace industry, the use of topological optimization and generative design is soon going to be a must in order to meet the environmental requirements of tomorrow.

Another indication for growth was highlighted in this Forbes article,

When GE, for example, chooses to invest $3.5 billionto purchase the 3D-printing machines that can produce metal parts and train the staff needed to run them, it’s not doing so because the technology is cool—it’s doing so because that’s where the additive manufacturing industry is headed.

 

By i3dadmin

U.S. Air Force General Proclaims Additive Manufacturing As A Massive Game Changer

Additive Manufacturing (DMLS) has been a rising trend that has the potential to revolutionize nearly everything we manufacture from human organs to mechanical components to firearm parts.

General Ellen Pawlikowski, Commander of the Air Force Material Command, compared the importance of additive manufacturing to other game-changing technologies like hypersonics, directed energy, and autonomy, stating,

“If you were to ask me what’s the fourth game changer, in my mind it’s additive manufacturing.”

I3D MFG agrees with these statements as they have been at the forefront of this  game-changing technology for nearly two years now, producing some of the most complex and revolutionary parts for their aerospace, firearms, heat exchanger and thruster clients

For the Air Force, these types of 3D metal parts, including flexible electronics, sensors, fuzes, energetics and warheads, help AFRL achieve the longer-term goal of using technologies like DMLS to rapidly prototype advanced capabilities for warfighters.

Dr. Amanda Schrand, principal investigator for FLEGOMAN at the AFRL/RW stated,

“We are maturing additive manufacturing to address technical challenges in fuze technology and ordnance sciences to increase the lethality of small weapons, and enable modular and flexible weapons. We also hope to decrease the time it takes to refresh critical components as well as decrease the cost to produce a weapon and its components. We are currently focusing on additively manufacturing survivable fuze electronics such as detonators, switches, capacitors and traces, leveraging the expertise of our colleagues at the AFRL Materials and Manufacturing Directorate, Sensors Directorate, Air Force Institute of Technology and Army Armament Research, Development and Engineering Center. Additionally, we are developing tailorable, lightweight, cellular warhead cases and structural reactive materials that offer strength and energy on demand. Finally, we are exploring ways to improve energetic materials by printing them rather than pouring them.”

I3D MFG, is able to use their experience and engineering to design, recommend,  and produce advanced metal components using additive manufacturing (DMLS) in order to fuel the next-generation of 3D metal printing techniques.

By i3dadmin

PiperJaffray Report: Metal 3D Printing A Bright Spot In The 4th Quarter

PiperJaffray released the results of their 4th Quarter 3D Printing Survey which can be found in our Library.  Please download it and read the entire article as it’s a great deep dive into the current and future state of 3D metal printing.

What they found for the 4th quarter was an indication that system demand remained challenged from the 3rd quarter.  As it turns out, PiperJaffray believes that Q4 and 2015 turned out to be challenging for the entire industry as a whole as users digested excess capacity which had built up over the years.

They also believe poor macro and FX conditions, as well as vertical specific headwinds in the Oil and Gas industry, played a role in the disappointing year for many 3D printing companies.

Though the data looks a bit discouraging in the report, it is encouraging to hear from industry contacts that interest and demand is beginning to reaccelerate for 3D technologies and they believe pipelines are strong heading into 2016. PiperJaffrays believes this is evident by the accelerating 1-year growth expectations from both Stratasys and 3D system resellers.

All in all, as the report points out, industry experts believe it will take additional quarters to get through some of the headwinds affecting companies in 2015, but are optimistic we will see a turning point in the second half of 2016.

Access the report here to see a full industry breakdown with insights and analysis.

By i3dadmin

3D Printing Is Here To Stay

In a recent article in the Dayton Business Journal, a good friend of ours, Chris Collins, published an article all about keeping Dayton ahead of the technology curve and one of the things leading that curve is 3D printing.

The article discusses the fact that Dayton has always been seen as somewhat of a declining economy with the downfall of the automotive industry but in fact it’s actually a hotbed for the manufacturing industry.  Dayton also happens to have one of the most cutting-edge research and development facilities in the United States at Wright-Patterson Air Force Base, which has initiatives in place to offer the local economy vendor priority.

In the article, Chris discusses why Additive Manufacturing is the next big industrial revolution and he want to help put Dayton right in the epicenter that revolution.

To really help put something behind that statement he uses the example of how NASA sends 3D printing files to the International Space Station where they can print them out for research and testing purposes.  No needing to make something, package it, then ship it.  Additive Manufacturing cuts out so many inefficient processes that it just makes sense to become the next revolution in the industrial/manufacturing world and all the way down to the consumer market.

Collins then hypothesizes that some day we won’t even need to ship any longer and in fact, when we buy certain products we will get them specifically made for our own personal selves instead of the generic “S-M-L-XL”.

He finishes by saying, “Make Dayton the place to go for everything 3D printing. Because you had better believe if we don’t adopt it, someone else will, if they haven’t already.”

This is certainly true about the entire Additive Manufacturing (3D Printing) industry and it’s also true that it is not a fad or a trend, it’s hear to stay and it’s changing lives everyday even if you don’t realize it.

 

1 2 3