By i3dadmin

New Case Studies: Additive Manufacturing (DMLS) Optimization Warheads And Aircraft Wings

We have added two new case studies to our DMLS Resource Library.  Major David Liu and others at the Airforce Institute of Technology (AFIT) have published groundbreaking studies based on Additive Manufacturing (DMLS) optimization of aircraft wings and lattice-reinforced penetrative warheads.

Topology Optimization Of An Aircraft Wing

For the additive manufacturing industry and specifically DMLS aircraft printing, this is a very important study.  Here’s the summary from the white paper which can be found here in our library:

Topology optimization was conducted on a three-dimensional wing body in order to enhance structural performance and reduce overall weight of the wing. The optimization was conducted using commercial software on an aircraft wing with readily available schematics, allowing a stress and displacement analysis. Optimizations were accomplished with an objective of minimizing overall compliance while maintaining an overall design-space volume fraction of less than 30 percent. A complete wing segment was post processed and 3D printed. Future analysis involves the optimization of a complete wing body with comparison to the baseline structure. The resulting designs will be 3D printed and wind-tunnel tested for process verification. A design will also be manufactured using metallic additive manufacturing techniques as a proof of concept for future aircraft design. The final optimized solution is expected to provide a weight savings between 15 and 25 percent.

 

Topology Optimization of Additively-Manufactured, Lattice-Reinforced Penetrative Warheads

A second case study along with a great presentation by Captain Hayden K. Richards and Major David Liu discusses the groundbreaking effect of DMLS on lattice-reinforced warheads. Penetrative warheads, characterized by massive, strong, and tough solid cylindrical cases with ogive noses, are generally manufactured using traditional techniques such as subtractive fabrication processes. In these processes, material is removed from pre-formed solid masses to produce simple shapes.

Recently, the development of sophisticated additive manufacturing (AM) machines, known colloquially as 3D printers, has revolutionized the process of building metal parts.

Visit our library for access to these incredible studies which help to reinforce the growing use of DMLS in critical industries such as aerospace and firearms.